OPPORTUNITIES OF FLOW CYTOMETRY IN DIAGNOSTICS OF INFECTIOUS DISEASES. Part 2

Cover Page
  • Authors: Khaidukov S.V.1, Zurochka A.V.2
  • Affiliations:
    1. Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН, Москва ФГУ Федеральный Научно-Клинический Центр детской гематологии, онкологии и иммунологии РОСЗДРАВА, Москва
    2. Институт иммунологии и физиологии УрО РАН, г. Екатеринбург
  • Issue: Vol 1, No 2 (2011)
  • Pages: 113-120
  • Section: REVIEWS
  • Submitted: 26.06.2014
  • Accepted: 26.06.2014
  • Published: 26.06.2014
  • URL: https://iimmun.ru/iimm/article/view/35
  • DOI: https://doi.org/10.15789/2220-7619-2011-2-113-120
  • ID: 35


Cite item

Full Text

Abstract

Abstract. Flow cytometry allows estimating quantitative and qualitative structure of populations and subpopulations of immune system cells by using various methodical approaches and a wide spectrum of reagents. For diagnostics the Acquired Immune Deficiency Syndrome (AIDS) caused by a Human Immunodeficiency Virus (HIV) the flow cytometry became irreplaceable. Traditionally, immunologists examine standard model of an estimation of immune dysfunction on the basis of classical markers of Т-cells (CD3, CD4, CD8) at the HIV-infection. But researchers pay less attention to other populations and subpopulations of lymphocytes, such as γδ-, αβ- and CD38+ Т-cells. The quantitative estimation of these parameters from a HIV and AIDS patients enables to see pathogenesis a HIV infection and the prediction of its development from another side.

 

About the authors

S. V. Khaidukov

Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН, Москва

ФГУ Федеральный Научно-Клинический Центр детской гематологии, онкологии и иммунологии РОСЗДРАВА, Москва

Author for correspondence.
Email: khsv@mail.ibch.ru

д.б.н., зав. лабораторией физиологии и патологии иммунной системы

117997, Москва, ул. Миклухо-Маклая, 16/10

Россия

A. V. Zurochka

Институт иммунологии и физиологии УрО РАН, г. Екатеринбург

Email: khsv@mail.ibch.ru
Россия

References

  1. Зурочка А.В., Гаврилова Т.В., Шестакова Е.В., Квятковская С.В., Миркина Т.В., Черешнев В.А. Оценка зависимости уровня γδ-Т-клеток у ВИЧ-инфицированных пациентов от уровня CD3+CD4+ Т-лимфоцитов // Мед. иммунол. — 2010. — Т. 12, № 4–5. — С. 425–428.
  2. Зурочка А.В., Гаврилова Т.В., Шестакова Е.В., Квятковская С.В., Распопина И.В., Черешнев В.А. Оценка уровня γδ-Т-лимфоцитов у больных ВИЧ-инфекцией в зависимости от вирусной нагрузки // Росс. иммунолог. журн. — 2010. — Т. 4 (13), № 1. — С. 77–82.
  3. Ситдыкова Ю.Р., Серебровская Л.В., Кравченко А.В. Мониторинг иммунного статуса при ВИЧ-инфекции: дополнительные маркеры и их клиническое значение // Эпидемиол. и инфекц. болезни. — 2008. — № 3 — С. 61–64.
  4. Хайдуков С.В., Зурочка А.В. Возможности проточной цитофлюориметрии в диагностике инфекционных заболеваний. Часть 1 // Инфекц. иммун. — 2011. — Т. 1, № 1. — С. 59–66.
  5. Хайдуков С.В., Зурочка А.В. Вопросы современной проточной цитометрии. Клиническое применение. — Челябинск: Изд-во «Челябинская государственная медицинская академия», 2008. — 195 с.
  6. Хайдуков С.В., Зурочка А.В., Черешнев В.А. Многоцветный цитометрический анализ. Идентификация Т-клеток и их субпопуляций по экспрессии αβ-ТCR и γδ-ТCR // Мед. иммунол. — 2008. — Т. 10, № 2–3. — С. 115–124.
  7. Autran B., Carcelaint G., Li T.S., Blanc C., Mathez D., Tubiana R., Katlama C., Debre P., Leibowitch J. Positive effects of combined antiretroviral therapy on CD4+ homeostasis and function in advanced HIV disease // Science. — 1997. — Vol. 277. — P. 112–116.
  8. Battistini L., Borsellino G., Sawicki G., Poccia F., Salvetti M., Ristori G., Brosnan C.F. Phenotypic and cytokine analysis of human peripheral blood gamma delta T cells expressing NK cell receptors // J. Immunol. — 1997. — Vol. 159, N 8. — P. 3723–3730.
  9. Born W.K., Lahn M., Takeda K., Kanehiro A., O'Brien R.L., Gelfand E.W. Role of gammadelta T cells in protecting normal air way function // Respir. Res. — 2000. — Vol. 1. — P. 151–158.
  10. Boullier S., Dadaglio G., Lafeuillade A. V delta 1 T cells expanded in the blood throughout HIV infection display a cytotoxic activity and are primed for TNF-alpha and INF-gamma production but are not selected in lymph nodes // J. Immunol. — 1997. — Vol. 159. — P. 3629–3667.
  11. Bouscarat F., Levacher M., Landman R., Muffat–Joly M., Girard P.-M., Saimot A.G., Brun-Vézinet F., Sinet M. Changes in blood CD8+ lymphocyte activation status and plasma HIV RNA levels during antiretroviral therapy // AIDS. — 1998. — Vol. 12 — P. 1267–1273.
  12. Brenner M.B., McLean J., Dialynas D.P., Strominger J.L., Smith J.A., Owen F.L., Seidman J.G., Ip S., Rosen F., Krangel M.S. Identification of a putative second T-cell receptor // Nature. — 1986. — Vol. 322, N 6075. — P. 145–149.
  13. Chen J., Niu H., He W., Ba D. Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes // Int. Arch. Allergy Immunol. — 2001. — Vol. 125. — P. 256–263.
  14. Chen Z.W., Letvin N.L. Adaptive immune response of Vgamma2Vdelta2 T cells: a new paradigm // Trends Immunol. — 2003. — Vol. 24. — P. 213–219.
  15. Dechanet J., Merville P., Lim A. Implication of γδ T cells in human immune response to cytomegalovirus // J. Clin. Invest. — 1999. — Vol. 103. — P. 1437–1449.
  16. .Dieli F., Troye-Blomberg M., Ivanyi J., Fournié J.J., Krensky A.M., Bonneville M., Peyrat M.A., Caccamo N., Sireci G., Salerno A. Granulysindependent killing of intracellular and extracellular Mycobacterium tuberculosis by gamma9/Vdelta2 T lymphocytes // J. Infect. Dis. — 2001. — Vol. 184. — P. 1082–1085.
  17. Ferbas J. Perspectives on the role of CD8 and factors and cytotoxic T lymphocytes during HIV infection // AIDS Res. Hum. Retrov. — 1998. — Vol. 14. — P. 153–160.
  18. Ferrarini M., Ferrero E., Dagna L., Poggi A., Zocch M.R. Human gammadelta T cells: a nonredundant system in the immune-surveillance against cancer // Trends Immunol. — 2002. — Vol. 23. — P. 14 –18.
  19. From the Centers for Disease Control and Prevention. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults // JAMA. — 1993. – Vol. 269, N 6. — P. 729–730.
  20. Fujimiya Y., Suzuki Y., Katakura R., Miyagi T., Yamaguchi T., Yoshimoto T., Ebina T. In vitro interleukin 12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(–) gammadelta T cells from glioblastoma patients // Clin. Cancer. Res. — 1997. — Vol. 3, N 4. — P. 633–643.
  21. Girardi M., Oppenheim D.E., Steele C.R., Lewis J.M., Glusac E., Filler R., Hobby P., Sutton B., Tigelaar R.E., Hayday A.C. Regulation of cutaneous malignancy by gammadelta T cells // Science. — 2001. — Vol. 294. — P. 605–609.
  22. Ichikawa Y., Shimizu H., Yoshida M., Takaya M., Arimori S. T cells bearing gamma/delta T cell receptor and their expression of activation antigen in peripheral blood from patients with Sjogren’s syndrome // Clin. Exp. Rheumatol. — 1991. — Vol. 9. — P. 603–609.
  23. Ichikawa Y., Shimizu H., Yoshida M., Takaya M., Arimori S. T cells bearing gamma/delta T cell receptor and their expression of activation antigen in peripheral blood from patients with Sjogren’s syndrome // Clin. Exp. Rheumatol. — 1991. — Vol. 9. — P. 603–609.
  24. Kabelitz D., Wesch D. Role of gamma delta T-lymphocytes in HIV infection // Eur. J. Med. Res. — 2001. — Vol. 6. — P. 169 –174.
  25. Kato Y., Tanaka Y., Miyagawa F., Yamashita S., Minato N. Targeting of tumor cells for human gammadelta T cells by nonpeptide antigens // J. Immunol. — 2001. — 167. — P. 5092–5098.
  26. Kawashima T., Norose Y, Watanabe Y, Enomoto Y., Narazaki H., Watari E., Tanaka S., Takahashi H., Yano I., Brenner M.B., Sugita M. Major CD8 T cell response to live bacillus Calmette-Gueґrin is mediated by CD1 molecules // J. Immunol. — 2003. — Vol. 170. — P. 5345–5348.
  27. Kestens L., Vanham G., Gigase P., Young G., Hannet I., Vanlangendonck F., Hulstaert F. Expression of activation antigens, HLA- DR and CD38, on CD8 lymphocytes during HIV-1 infection // AIDS. — 1992. — Vol. 6 — P. 793–797.
  28. Kobayashi H., Tanaka Y., Yagi J., Toma H., Uchyama T. Gamma/delta T cells provide innate immunity against renal cell carcinoma // Cancer. Immunol. Immunother. — 2001. — Vol. 50. — P. 115–124.
  29. Komano H., Fujiurat Y., Kawaguch M., Matsumoto S., Hashimoto Y., Obana S., Mombaerts P., Tonegawa S., Yamamoto H., Itohara S., Nanno M., Ishikawa H. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells // Proc. Natl. Acad. Sci. USA. — 1995. — Vol. 92. — P. 6147–6151.
  30. Kosub D.A., Lehrman G., Milush J.M. Gamma/delta T-cell functional responses differ after pathogenic human immunodeficiency virus and nonpathogenic simian immunodeficiency virus infections // J. Virol. — 2008. — Vol. 82. — P. 1155–1165.
  31. Kretowski A., Mysliwiec J., Szelachowska M., Turows ki D., Wysocka J., Kowalska I., Kinalska I. Gammadelta T-cells alterations in the peripheral blood of high risk diabetes type 1 subjects with subclinical pancreatic B-cells impairment // Immunol. Lett. — 1999. — Vol. 68. — P. 289–293.
  32. .Lafarge X., Merville P., Cazin M.C., Bergé F., Potaux L., Moreau J.F., Déchanet-Merville J. Cytomegalovirus infection in transplant recipients resolves when circulating gammadelta T lymphocytes expand, suggesting a protective antiviral role // J. Infect. Dis. — 2001. — Vol. 184. — P. 533–541.
  33. Lambert C., Genin C. CD3 bright lymphocyte population reveal gam madelta T cells // Cytometr y. — 2004. — Vol. 61, N 1. — P. 45–53.
  34. Lahn M., Kanehiro A., Takeda K., Joetham A., Schwarze J., Köhler G., O’Brien R., Gelfand E.W., Born W. Negative regulation of airway responsiveness that is dependent on gammadelta T cells and independent of alphabeta T cells // Nat. Med. — 1999. — Vol. 5. — P. 1150–1156.
  35. Lehner T., Mitchell E., Bergmeier L., Singh M., Spallek R., Cranage M., Hall G., Dennis M., Villinger F., Wang Y. The role of gammadelta T cells in generating antiviral factors and beta-chemo kines in protection against mucosal simian immunodeficiency virus infection // Eur. J. Immunol. — 2000. — Vol. 30. — P. 2245–2255.
  36. Li H., Peng H., Ma P., Pauza D., Shao Y. Association between Vγ2Vδ2 T cells and disease progression after infection with closely-related viral strains of HIV in China // Clin. Infect. Dis. — 2008. — Vol. 46 — P. 1466 –1472.
  37. Mandy F.F., Nicholson J.K., McDougal J.S. CDC. Guidelines for performing single-platform absolute CD4+ T-cell determinations with CD45 gating for persons infected with human immunodeficiency virus. Centers for Disease Control and Prevention // MMWR Recomm Rep. — 2003. — Vol. 52 (RR02). — P. 1–13.
  38. Martini F., Urso R., Gioia C. Gammadelta T-cell anergy in human immunodeficiency virus-infected persons with opportunistic infections and recovery after highly active antiretroviral therapy // Immunology. — 2000. — Vol. 100. — P. 481–486.
  39. McClanahan J., Fukushima P.I., Stetler-Stevenson M. Increased peripheral blood gamma delta T-cells in patients with lymphoid neoplasia: a diagnostic dilemma in flow cytometry // Cytometry. — 1999. — Vol. 38. — P. 280–285.
  40. Mogues T., Goodrich M.E, Ryan L., LaCourse R., North R.J. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice // J. Exp. Med. — 2001. — Vol. 193. — P. 271–280.
  41. Moore T.A., Moore B.B., Newstead M.W., Standiford T.J. Gamma delta-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia // J. Immunol. — 2000. — Vol. 165. — P. 2643–2650.
  42. Morita C.T., Beckman E.M., Bukowski J.F., Tanaka Y., Band H., Bloom B.R., Golan D.E.,
  43. Brenner M.B. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ-T cells // Immunity. — 1995. — Vol. 3. — P. 495–507.
  44. Morita C.T., Lee H.K., Leslie D.S., Tanaka Y., Bukowski J.F., Märker-Hermann E. Recognition of nonpeptide prenyl pyrophosphate antigens by human γδ-T cells // Microbes. Infect. — 1999. — Vol. 1. — P. 175–186.
  45. Morita C.T., Mariuzza R.A., Brenner M.B. Antigen recognition by human γδ-T cells: pattern recognition by the adaptive immune system // Springer. Semin. Immunopathol. — 2000. — Vol. 22. — P. 191–217.
  46. Morita C.T., Tanaka Y., Bloom B.R., Brenner M.B. Direct presentation of non-peptide prenyl pyrophosphate antigens to human γδ-T cells // Res. Immunol. — 1996. — Vol. 147. — P. 347–353. . 64Nunnari G. Do Vγ2Vδ2 T cells influence HIV disease progression? // Clin. Infect. Dis. — 2008. — Vol. 46. — P. 1473–1475.
  47. Pawelec G., Sayers T., Busch F. Regulation of normal myelopoiesis and chronic myelogenous leukemia cell proliferation through a non-cytotoxic mechanism by a γδ cell clone // M. Immunol. Lett. — 1989. — Vol. 22. — P. 199–204.
  48. Pellegrin J.L., Taupin J.L., Dupon M., Ragnaud J.M., Maugein J., Bonneville M., Moreau J.F. Gammadelta T cells increase with Mycobacterium avium complex infection but not with tuberculosis in AIDS patients // Int. Immunol. — 1999. — Vol. 11. — P. 1475–1478.
  49. Poles M.A., Barsoum S., Yu W. Human immunodeficiency virus type 1 induces persistent changes in mucosal and blood gammadelta T cells despite suppressive therapy // J. Virol. — 2003. — Vol. 77. — P. 10456–10467.
  50. Robak E., Blonski J.Z., Bartkowiak J., Niewiadomska H., Sysa-Jedrzejowska A., Robak T. Circulating TCR gammadelta cells in the patients with systemic lupus erythematosus // Mediators Inflamm. — 1999. — Vol. 8. — P. 305–312.
  51. Saito T., Hochstenbach F., Marusic-Galesic S., Kruisbeek A.M., Brenner M., Germain R.N. Surface expression of only gamma delta and/or alpha beta T cell receptor heterodimers by cells with four (alpha, beta, gamma, delta) functional receptor chains // J. Exp. Med. — 1988. — Vol. 168, N 3. — P. 1003–1020.
  52. Schramm C.M., Puddington L., Yiamouyiannis C.A., Lingenheld E.G., Whiteley H.E., Wolyniec W.W., Noonan T.C., Thrall R.S. Proinflammatory roles of T-cell receptor (TCR)gammadelta and TCRalphabeta lymphocytes in a murine model of asthma // Am. J. Respir. Cell. Mol. Biol. — 2000. — Vol. 22. — P. 218–225.
  53. Selin L.K., Santolucito P.A., Pinto A.K., SzomolanyiTsuda E., Welsh R.M. Innate immunity to viruses: control of vaccinia virus infection by gamma delta T cells // J. Immunol. — 2001. — Vol. 166. — P. 6784–6794.
  54. Sindhu S.T., Ahmad R., Morisset R., Ahmad A., Menezes J. Peripheral blood cytotoxic gammadelta T lymphocytes from patients with human immunodeficiency virus type 1 infection and AIDS lyse uninfected CD4+ T cells, and their cytocidal potential correlates with viral load // J. Virol. — 2003. — Vol. 77. — P. 1848–1855.
  55. Yamashita N., Kaneoka H., Kaneko S., Takeno M., Oneda K., Koizumi H., Kogure M., Inaba G., Sakane T. Role of gammadelta T lymphocytes in the development of Behet’s disease // Clin. Exp. Immunol. — 1997. — Vol. 107, N 2. — P. 241–247.
  56. Yin Z., Craft J. Gamma delta T cells in autoimmunity // Springer Semin. Immunopathol. — 2000. — Vol. 22. — P. 311–320.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Khaidukov S.V., Zurochka A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies