ACCEPTIVE IMMUNITY — A BASIS FOR SYMBIOTIC RELATIONSHIPS
- Authors: Kisseleva E.P.1
-
Affiliations:
- North-West Branch of the Russian Academy of Medical Sciences
- Issue: Vol 5, No 2 (2015)
- Pages: 113-130
- Section: REVIEWS
- Submitted: 27.06.2015
- Accepted: 27.06.2015
- Published: 27.06.2015
- URL: https://iimmun.ru/iimm/article/view/292
- DOI: https://doi.org/10.15789/2220-7619-2015-2-113-130
- ID: 292
Cite item
Full Text
Abstract
Review covers modern data on relationships of normal intestinal microbiota and immune system. Possibility to maintain the residence of large numbers of symbiotic bateria at mucosal surfaces of the body is regarded as a separate and independent immunological function named acceptive immunity. Basic effector arms of protective (defense against pathogens) and acceptive immunity (symbiotic relationships) are compared. Acceptive immunity differs from protective one in the absence of inflammation where all complex of immune reactions occurs in the context of physiological process. Several homeostatic mechanisms that provide crosstalk with symbiotic bacteria at the epithelial surfaces, innate and adaptive immunity are described. The main immunological strategies towards symbiotic bacteria are support of microbial community from one hand, and providing of host defense, from the other hand. The key step of this interaction is sensing of soluble microbial products via pattern-recognition receptors on the host cells. Basic innate immune response consists of mucus production and synthesis of antimicrobial peptides by barrier epithelial cells as well as maintenance of specific anti-inflammatory microenvironment. The main adaptive response is synthesis of secretory immunoglobulin A that is produced to the intestinal lumen and interacts with bacteria. At the same time, immunoglobulin A does not make any damage for commensals. Moreover this factor plays important role in symbiotic relationships. The following promicrobial functions of immunoglobulin A are suggested: participation in biofilm formation, discrimination of intestinal bacteria for fixed and free-living populations as well as facilitation of microbial transport through M cells. Mucosal homeostasis is supported by the development of immunological tolerance with participation of T regulatory cells. Main mechanisms of the development and maintenance of specific tolerance towards antigens of normal microbiota are discussed. Modern data on the participation of two main populations of T-regulatory cells are cited — thymic cells and cells induced in periphery. It is now accepted, that development of specific tolerance to microbial and food antigens plays important role in prevention of autoimmune and allergic diseases.
About the authors
E. P. Kisseleva
North-West Branch of the Russian Academy of Medical Sciences
Author for correspondence.
Email: ekissele@yandex.ru
PhD, MD (Medicine), Head of the Laboratory of Immunoregulation, Department of Immunology, St. Petersburg State Pediatric Medical University, 191119, Russian Federation, St. Petersburg, Dostoevskiy str., 32, 4 Россия
References
- Климович В.Б. Актуальные проблемы эволюционной иммунологии // Журнал эволюционной биохимии и физиологии. 2002. Т. 38, № 5. С. 442–451. [Klimovich V.B. Actual problems of evolutionary immunology. Zhurnal evolyutsionnoi biokhimii i fiziologii = J. Evol. Biochem. Physiol., 2002, vol. 38, no. 5, pp. 562–574. (In Russ.)]
- Климович В.Б., Самойлович М.П. Иммуноглобулин А (IgA) и его рецепторы // Медицинская иммунология. 2006. Т. 8, № 4. С. 483–500. [Klimovich V.B., Samoilovich M.P. Immunoglobulin A (IgA) and its receptors. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2006, vol. 8, no. 4, pp. 483–500. doi: 10.15789/1563-0625-2006-4-483-500 (In Russ.)]
- Кокряков В.Н. Очерки о врожденном иммунитете. СПб.: Наука, 2006. 261 с. [Kokryakov V.N. Ocherki o vrozhdennom immunitete [Essays on innate immunity]. St. Petersburg: NAUKA, 2006. 261 p.]
- Bevins C.L., Ganz T. Antimicrobial peptides of the alimentary tract of mammals / Mammalian host defense peptides; eds. Devine D.A., Hancock R.E.W. UK: Cambridge University Press, 2004, pp. 161–188.
- Biesbrock A.R., Reddy M.S., Levine M.J. Interaction of salivary mucin-secretory immunoglobulin A complex with mucosal patho gens. Infect. Immun., 1991, vol. 59, no. 10, pp. 3492–3497.
- Bilate A.M., Lafaille J.J. Induced CD4+Foxp3+ regulatory T-cells in immune tolerance. Annu. Rev. Immunol., 2012, vol. 30, pp. 733–758. doi: 10.1146/annurev-immunol-020711-075043
- Boehm T. Evolution of vertebrate immunity. Curr. Biol., 2012, vol. 22, pp. R722–R732. doi: 10.1016/j.cub.2012.07.003
- Boullier S., Tanguy M., Kadaoui K.A., Caubet C., Sansonetti P., Corthesy B., Phalipon A. Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J. Immunol., 2009, vol. 183, pp. 5879–5885. doi: 10.4049/jimmunol.0901838
- Brandl K., Pitas G., Schnabl B., DeMatteo R.P., Pamer E.G. MyD88-mediated signals induce the bacterial lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med., 2007, vol. 204, pp. 1891–1900. doi: 10.1084/jem.20070563
- Brandtzaeg P. Secretory IgA: designed for anti-microbial defense. Front. Immunol., 2013, vol. 4, pp. 1–17. doi: 10.3389/fimmu.2013.00222
- Brown E.M., Sadarangani M., Finlay B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nature Immunol., 2013, vol. 14, no. 7, pp. 660–667. doi: 10.1038/ni.2611
- Burger-Van Paassen N., Vincent A., Puiman P.J., Van der Sluis M., Bouma J., Boehm G., Van Goudoever J.B., Van Seuningen I., Renes I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J., 2009, vol. 420, pp. 211–219. doi: 10.1042/BJ20082222
- Cash H.L., Whitham C.V., Behrendt C.L., Hooper L.V. Symbiotic bacteria direct expression of an intestinal bacterial lectin. Science, 2006, vol. 313, pp. 1052–1054. doi: 10.1126/science.1127119
- Cebula A., Seweryn M., Rempala G.A., Pabla S.S., McIndoe R.A., Denning T.L., Bry L., Kraj P., Kisielow P., Ignatowicz L. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, vol. 497, no. 7448, pp. 258–262. doi: 10.1038/nature12079
- De Goër de Herve M.G., Jaafoura S., Vallee M., Taoufik Y. Foxp3+ regulatory CD4 T cells control the generation of functional CD8 memory. Nat. Commun., 2012, vol. 3, no. 986. doi: 10.1038/ncomms1992 doi: 10.1038/ncomms1992
- Eberl G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol., 2010, vol. 3, no. 5, pp. 450–460. doi: 10.1038/mi.2010.20
- Everett M.L., Palestrant D., Miller S.E., Bollinger R.R., Parker W. Immune exclusion and immune inclusion: a new model of hostbacterial interactions in the gut. Clin. Appl. Immunol. Rev., 2004, vol. 4, pp. 321–332. doi: 10.1016/j.cair.2004.03.001
- Faria A.M.C., Weiner H.W. Oral tolerance. Immunol. Rev., 2005, vol. 206, pp. 232–259.
- Fontenot J.D., Gavin M.A., Rudensky A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, vol. 4, no. 4, pp. 330–336. doi: 10.1038/ni904
- Frantz A.L., Rogier E.W., Weber C.R., Shen L., Cohen D.A., Fenton L.F., Bruno M.E.C., Kaetzel C.S. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with down-regulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunology, 2012, vol. 5, no. 5, pp. 501–512. doi: 10.1038/mi.2012.23
- Han D., Walsh M.C., Cejas P.J., Dang N.N., Kim Y.F., Kim J., Charrier-Hisamuddin L., Chau L., Zhang Q., Bittinger K., Bushman F.D., Turka L.A., Shen H., Reizis B., DeFranco A.L., Wu G.D., Choi Y. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity, 2013, vol. 38, pp. 1211–1222. doi: 10.1016/j.immuni.2013.05.012
- He B., Xu W., Santini P.A., Polydorides A.D., Chiu A., Estrella J., Shan M., Shadbun A., Villanacci V., Plebani A., Knowles D.M., Rescigno M., Cerutti A. Intestinal bacteria trigger T-cell-independent IgA2 class switching by inducing epithelial cell secretion of the cytokine APRIL. Immunity, 2007, vol. 26, pp. 812–826. doi: 10.1016/j.immuni.2007.04.014
- Herr A.B., Ballister E.R., Bjorkman P.J. Insights into IgA-mediated immune responses from the crystal structures of human FcalphaR1 and its complex with IgA1-Fc. Nature, 2003, vol. 423, pp. 614–620.
- Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol., 2010, vol. 28, pp. 623–667. doi: 10.1146/annurev-immunol-030409-101330
- Honda K., Takeda K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol., 2009, vol. 2, no. 3, pp. 187–196. doi: 10.1038/mi.2009.8
- Hooper J.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science, 2012, vol. 336, pp. 1268–1273. doi: 10.1126/science.1223490
- Hooper L.V., Stappenbeck T.S., Hong C.V., Gordon J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol., 2003, vol. 4, pp. 269–273. doi: 10.1038/ni888
- Hori S., Nomura N., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, vol. 299, pp. 1057–1061. doi: 10.1126/science.1079490
- Iliev I.D., Mileti E., Matteoli G., Chieppa M., Rescigno M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol., 2009, vol. 2, pp. 340–350. doi: 10.1038/mi.2009.13
- Johansson M.E.V., Holmen Larsson J.M., Hansson G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, suppl. 1, pp. 4659–4665. doi: 10.1073/pnas.1006451107
- Josefowicz S.Z., Lu L.-F., Rudensky A.Y. Regulatory T cells: mechanism of differentiation and function. Annu. Rev. Immunol., 2012, vol. 30, pp. 531–564. doi: 10.1146/annurev.immunol.25.022106.141623
- Josefowicz S.Z., Niec R.E., Kim H.Y., Treuting P., Chinen T., Zheng Y., Umetsu D.T., Rudensky A.Y. Extrathymically generated regulatory T cells control mucosal Th2 inflammation. Nature, 2012, vol. 482, pp. 395–399. doi: 10.1038/nature10772
- Kadaoui K.A., Corthesy B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. J. Immunol., 2007, vol. 179, no. 11, pp. 7751–7757. doi: 10.4049/ jimmunol.179.11.7751
- Kaetzel C.S. Coevolution of mucosal immunoglobulins and the polymeric immunoglobulin receptor: evidence that the commensal microbiota provided the driving force. ISRN Immunology, 2014, vol. 2014, pp. 1–20. doi: 10.1155/2014/541537
- Karlsson J., Pütsep K., Chu H., Kays R.J., Bevins C.L., Andersson M. Regional variations in Paneth cell antimicrobial peptide expression along mouse intestinal tract. BMC Immunol., 2008, vol. 9, no. 37. doi: 10.1186/1471-2172-9-37
- Kobayashi K.S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nunez G., Flavell R.A. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 2005, vol. 307, no. 5710, pp. 731–734. doi: 10.1126/science.1104911
- Koropatnick T.A., Engle J.T., Apicella M.A., Stabb E.V., Goldman W.E., McFall-Ngai M.J. Microbial factor-mediated development in a host-bacterial mutualism. Science, 2004, vol. 306, pp. 1186–1188. doi: 10.1126/science.1102218
- Kruglov A.A., Grivennikov S.I., Kuprash D.V., Winsauer C., Prepens S., Seleznik G.M., Ebert G., Littman D.R., Heikenwalder M., Tumanov A.V., Nedospasov S.A. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science, 2013, vol. 342, pp. 1243–1246. doi: 10.1126/science.1243364
- Lathrop S.K., Bloom S.M., Rao S.M., Nutsch K., Lio C.-W., Santakruz N., Peterson D.A., Stappenbeck T.S., Hsieh C.S. Peripheral education of the immune system by colonic commensal microbiota. Nature, 2011, vol. 478, pp. 251–254. doi: 10.1038/nature10434
- Laurin M., Everett M.L., Parker W. The cecal appendix: one more immune component with a function disturbed by post-industrial culture. Anat. Rec., 2011, vol. 294, pp. 567–579. doi: 10.1002/ar.21357
- Licona-Limon P., Henao-Mejia J., Temann A.U., Gagliani N., Licona-Limon I., Ishigame H., Hao L., Herbert D.R., Flavell R.A. Th9 cells drive host immunity against gastrointestinal worm infection. Immunity, 2013, vol. 39, no. 4, pp. 744–757. doi: 10.1016/j.immuni.2013.07.020
- Louahed J., Toda M., Jen J., Hamid Q., Renauld J.C., Levitt R.C., Nicolaides N.C. Interleukin-9 upregulates mucus expression in the airways. Am. J. Respir. Cell. Mol. Biol., 2000, vol. 22, pp. 649–656. doi: 10.1165/ajrcmb.22.6.3927
- Macia L., Thorburn A.N., Binge L.C., Marino E., Rogers K.E., Maslowski K.M., Vieira A.T., Kranich J., Mackay C.R. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. Rev., 2012, vol. 245, no. 1, pp. 164–176. doi: 10.1111/j.1600-065X.2011.01080.x
- Macpherson A.J., Geuking M.B., McCoy K.D. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol., 2012, vol. 33, no. 4, pp. 160–167. doi: 10.1016/j.it.2012.02.002
- Mantis N.J., Rol N., Corthesy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol., 2011, vol. 4, no. 6, pp. 603–611. doi: 10.1038/mi.2011.41
- Masuda K., Nakamura K., Yoshioka S., Fukaya R., Sakai N., Ayabe T. Regulation of microbiota by antimicrobial peptides in the gut. Adv. Otorhinolaryngol., 2011, vol. 72, pp. 97–99. doi: 10.1159/000324625
- Mathias A., Corthesy B. N-glycans on secretory component. Mediators of the interaction between secretory IgA and Grampositive commensals sustaining intestinal homeostasis. Gut Microbes, 2011, vol. 2, no. 5, pp. 287–293. doi: 10.4161/gmic.2.5.18269
- Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol., 2007, vol. 8, no. 1, pp. 11–13. doi: 10.1038/ni0107-11
- Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, vol. 489, no. 7415, pp. 231–241. doi: 10.1038/nature11551
- McFall-Ngai M. Care for the community. Nature, 2007, vol. 445, p. 153. doi: 10.1038/445153a
- Medzhitov R., Janeway C.A. Decoding the patterns of self and nonself by innate immune system. Science, 2002, vol. 296, pp. 298–300. doi: 10.1126/science.1068883
- Menendez A., Willing B.P., Montero M., Wlodarska M., So C.C., Bhinder G., Vallance B.A., Finlay B.B. Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell α-defensins. J. Innate. Immun., 2013, vol. 5, no. 1, pp. 39–49. doi: 10.1159/000341630
- Mestecky J., Russell M.W. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol. Lett., 2009, vol. 124, pp. 57–62. doi: 10.1016/j.imlet.2009.03.013
- Mkaddem S.B., Rossato E., Heming N., Monteiro R.C. Anti-inflammatory role of the IgA Fc receptor (CD89): from autoimmunity to therapeutic perspectives. Autoimmun. Rev., 2013, vol. 12, pp. 666–669. doi: 10.1016/j.autrev.2012.10.011
- Morgan X.C., Segata N., Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet., 2013, vol. 29, pp. 51–58. doi: 10.1016/j.tig.2012.09.005
- Pabst O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol., 2012, vol. 12, no. 12, pp. 821–832. doi: 10.1038/nri3322
- Pabst O. Traffiking of regulatory T cells in the intestinal immune system. Int. Immunol., 2013, vol. 25, no. 3, pp. 139–143. doi: 10.1093/intimm/dxs113
- Pearson C., Uhlig H.H., Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol., 2012, vol. 33, no. 6, pp. 289–296. doi: 10.1016/j.it.2012.04.004
- Pena J.A., Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by contact-independent mechanism. Cell. Microbiol., 2003, vol. 5, pp. 277–285. doi: 10.1046/j.1462-5822.2003.t01-1-00275.x
- Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe, 2007, vol. 2, pp. 328–339. doi: 10.1016/j.chom.2007.09.013
- Phalipon A., Cardona A., Kraehenbuhl J.-P., Edelman L., Sansonetti P.J., Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity, 2002, vol. 17, pp. 107–115. doi: 10.1016/S1074-7613(02)00341-2
- Putsep K., Axelsson L.G., Boman A., Midtvedt T., Normark S., Boman H.G., Andersson M. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem., 2000, vol. 275, no. 51, pp. 40478–40482. doi: 10.1074/jbc.M007816200
- Renz H., Brandtzaeg P., Hornef M. The impact of perinatal immune development of mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol., 2012, vol. 12, pp. 9–23. doi: 10.1038/nri3112
- Sakaguchi S., Vignali D.A.A., Rudensky A.Y., Niec R.E., Waldman H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol., 2013, vol. 13, no. 6, pp. 461–467. doi: 10.1038/nri3464
- Salzman N.H. Microbiota-immune system interaction: an uneasy alliance. Curr. Opin. Microbiol., 2011, vol. 14, no. 1, pp. 99–105. doi: 10.1016/j.mib.2010.09.018
- Sansonetti P.J., Medzhitov R. Learning tolerance while fighting ignorance. Cell, 2009, vol. 138, pp. 416–420. doi: 10.1016/j.cell.2009.07.024
- Savage P.A., Malchow S., Leventhal D.S. Basic principles of tumor-associated T cell biology. Trends Immunol., 2013, vol. 34, no. 1, pp. 33–40. doi: 10.1016/j.it.2012.08.005
- Schmitt E., Klein M., Bopp T. Th9, new players in adaptive immunity. Trends Immunol., 2014, vol. 35, no. 2, pp. 61–68. doi: 10.1016/j.it.2013.10.004
- Shan M., Gentile M., Yeiser J.R., Walland A.C., Bornstein V.U., Chen K., He B., Cassis L., Bigas A., Cols M., Comerma L., Huang B., Blander J.M., Xiong H., Mayer L., Berin C., Augenlicht L.H., Velcich A., Cerutti A. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, 2013, vol. 342, no. 6157, pp. 447–453. doi: 10.1126/science.1237910
- Smith P.D., Smythies L.E., Shen R., Greenwell-Wild T., Gliozzi M., Wahl S.M. Intestinal macrophages and response to microbial encroachment. Mucosal. Immunol., 2011, vol. 4, no. 1, pp. 31–42. doi: 10.1038/mi.2010.66
- Snoeck V., Peters I.E., Cox E. The IgA system: a comparison of structure and function in different species. Vet. Res., 2006, vol. 37, pp. 455–467. doi: 10.1051/vetres:2006010
- Sonnenberg G.F., Fouser L.A., Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol., 2011, vol. 12, pp. 383–390. doi: 10.1038/ni.2025
- Stappenbeck T.S., Hooper L.V., Gordon J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 24, pp. 15451–15455. doi: 10.1073/pnas.202604299
- Steenwinckel V., Louahed J., Lemaire M.M., Sommereyns C., Warnier G., McKenzie A., Brombacher F., Van Snick J., Renauld J.-C. IL-9 promotes IL-13-dependent Paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol., 2009, vol. 182, pp. 4737–4743. doi: 10.4049/jimmunol.0801941
- Suzuki K., Meek B., Doi Y., Muramatsu M., Chiba T., Honjo T., Fagarasan S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 1981–1986. doi: 10.1073/pnas.0307317101
- Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 2009, vol. 9, pp. 799–809. doi: 10.1038/nri2653
- Weaver C.T., Hatton R.D. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat. Rev. Immunol., 2009, vol. 9, pp. 883–889. doi: 10.1038/nri2660
- Wei M., Shinkura R., Doi Y., Maruya M., Fagarasan S., Honjo T. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol., 2011, vol. 12, pp. 264–270. doi: 10.1038/ni.1991
- Whitman W.B., Coleman D.C., Wiebe W.J. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6578–6583.
- Williams R.C., Gibbons R.J. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science, 1972, vol. 177, pp. 697–699. doi: 10.1126/science.177.4050.697
- Woof J.M., Kerr M.A. IgA function — variations on a theme. Immunology, 2004, vol. 113, pp. 175–177. doi: 10.1111/j.1365-2567.2004.01958.x
- Zhang N., Bevan M.J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity, 2013, vol. 39, no. 4, pp. 687–696. doi: 10.1016/j.immuni.2013.08.019
- Zhao P., Xiao X., Ghobrial R.M., Li X.C. IL-9 and Th9 cells: progress and challenges. Intern. Immunol., 2013, vol. 25, no. 10, pp. 547–551. doi: 10.1093/intimm/dxt039
- Zhu Z., Homer R.J., Wang Z., Chen Q., Geba G.P., Wang J., Zhang Y., Elias J.A. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest., 1999, vol. 103, pp. 779–788. doi: 10.1172/JCI5909