АКЦЕПТИВНЫЙ ИММУНИТЕТ — ОСНОВА СИМБИОТИЧЕСКИХ ВЗАИМООТНОШЕНИЙ
- Авторы: Киселева Е.П.1
-
Учреждения:
- СЗО РАМН
- Выпуск: Том 5, № 2 (2015)
- Страницы: 113-130
- Раздел: ОБЗОРЫ
- Дата подачи: 27.06.2015
- Дата принятия к публикации: 27.06.2015
- Дата публикации: 27.06.2015
- URL: https://iimmun.ru/iimm/article/view/292
- DOI: https://doi.org/10.15789/2220-7619-2015-2-113-130
- ID: 292
Цитировать
Полный текст
Аннотация
В обзоре представлены современные данные о взаимоотношениях нормальной микробиоты кишечника и иммунной системы. Обеспечение возможности проживания большого количества видов симбионтных бактерий на слизистых рассматривается как отдельная и независимая функция иммунной системы — акцептивная. Приводятся данные по сопоставлению основных эффекторных звеньев протективного (защита от патогенов) и акцептивного (взаимодействие с комменсалами) иммунитета. Важным отличием акцептивного иммунитета от протективного является отсутствие воспаления и осуществление всего сложного комплекса иммунологических реакций только в пределах физиологической нормы. Описаны основные гомеостатические механизмы, обеспечивающие симбиотические взаимоотношения в слизистой кишечника, происходящие на уровне эпителия, а также на уровне клеток врожденного и адаптивного иммунитета. Поскольку симбионтные бактерии являются полезными для организма, основные задачи акцептивного иммунитета заключаются в обеспечении условий для создания и поддержания микробного биоценоза с одной стороны, а с другой — в обеспечении безопасности организма хозяина. Ключевым этапом этого взаимодействия является распознавание микробных продуктов с помощью паттерн-распознающих рецепторов на клетках хозяина. Основным ответом врожденного иммунитета является продукция слизи и антибактериальных пептидов клетками барьерного эпителия, а также развитие в подслизистой специфического микроокружения, богатого противовоспалительными факторами. Главным ответом адаптивного иммунитета является синтез секреторного иммуноглобулина А, который выделяется в просвет кишечника и взаимодействует с бактериями. При этом иммуноглобулин А не оказывает повреждающего действия в отношении комменсалов. Напротив, этот фактор играет важную роль в создании симбиотических взаимоотношений. В качестве предполагаемых промикробных функций секреторного иммуноглобулина А рассматривают его роль в формировании биопленки, в организации фиксированного и свободного способов проживания кишечных бактерий, а также участие иммуноглобулина А в транспорте микроорганизмов через М-клетки. Для поддержания нормального гомеостаза слизистых в организме создается состояние иммунологической толерантности с участием Т-регуляторных клеток. Рассматриваются основные механизмы формирования и поддержания специфичес кой толерантности к антигенам нормальной микробиоты. Приводятся данные об участии в этом процессе двух основных популяций Т-регуляторных клеток — тимусных и индуцированных на периферии. Считается, что поддержание толерантности к антигенам нормальной микробиоты и пищи играет важную системную роль и препятствует развитию аутоиммунных и аллергических состояний.
Об авторах
Е. П. Киселева
СЗО РАМН
Автор, ответственный за переписку.
Email: ekissele@yandex.ru
д.м.н., зав. лабораторией иммунорегуляции отдела иммунологии, ФГБУ НИИ экспериментальной медицины, 197376, Россия, Санкт-Петербург, ул. акад. Павлова, 12 Россия
Список литературы
- Климович В.Б. Актуальные проблемы эволюционной иммунологии // Журнал эволюционной биохимии и физиологии. 2002. Т. 38, № 5. С. 442–451. [Klimovich V.B. Actual problems of evolutionary immunology. Zhurnal evolyutsionnoi biokhimii i fiziologii = J. Evol. Biochem. Physiol., 2002, vol. 38, no. 5, pp. 562–574. (In Russ.)]
- Климович В.Б., Самойлович М.П. Иммуноглобулин А (IgA) и его рецепторы // Медицинская иммунология. 2006. Т. 8, № 4. С. 483–500. [Klimovich V.B., Samoilovich M.P. Immunoglobulin A (IgA) and its receptors. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2006, vol. 8, no. 4, pp. 483–500. doi: 10.15789/1563-0625-2006-4-483-500 (In Russ.)]
- Кокряков В.Н. Очерки о врожденном иммунитете. СПб.: Наука, 2006. 261 с. [Kokryakov V.N. Ocherki o vrozhdennom immunitete [Essays on innate immunity]. St. Petersburg: NAUKA, 2006. 261 p.]
- Bevins C.L., Ganz T. Antimicrobial peptides of the alimentary tract of mammals / Mammalian host defense peptides; eds. Devine D.A., Hancock R.E.W. UK: Cambridge University Press, 2004, pp. 161–188.
- Biesbrock A.R., Reddy M.S., Levine M.J. Interaction of salivary mucin-secretory immunoglobulin A complex with mucosal patho gens. Infect. Immun., 1991, vol. 59, no. 10, pp. 3492–3497.
- Bilate A.M., Lafaille J.J. Induced CD4+Foxp3+ regulatory T-cells in immune tolerance. Annu. Rev. Immunol., 2012, vol. 30, pp. 733–758. doi: 10.1146/annurev-immunol-020711-075043
- Boehm T. Evolution of vertebrate immunity. Curr. Biol., 2012, vol. 22, pp. R722–R732. doi: 10.1016/j.cub.2012.07.003
- Boullier S., Tanguy M., Kadaoui K.A., Caubet C., Sansonetti P., Corthesy B., Phalipon A. Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. J. Immunol., 2009, vol. 183, pp. 5879–5885. doi: 10.4049/jimmunol.0901838
- Brandl K., Pitas G., Schnabl B., DeMatteo R.P., Pamer E.G. MyD88-mediated signals induce the bacterial lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med., 2007, vol. 204, pp. 1891–1900. doi: 10.1084/jem.20070563
- Brandtzaeg P. Secretory IgA: designed for anti-microbial defense. Front. Immunol., 2013, vol. 4, pp. 1–17. doi: 10.3389/fimmu.2013.00222
- Brown E.M., Sadarangani M., Finlay B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nature Immunol., 2013, vol. 14, no. 7, pp. 660–667. doi: 10.1038/ni.2611
- Burger-Van Paassen N., Vincent A., Puiman P.J., Van der Sluis M., Bouma J., Boehm G., Van Goudoever J.B., Van Seuningen I., Renes I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J., 2009, vol. 420, pp. 211–219. doi: 10.1042/BJ20082222
- Cash H.L., Whitham C.V., Behrendt C.L., Hooper L.V. Symbiotic bacteria direct expression of an intestinal bacterial lectin. Science, 2006, vol. 313, pp. 1052–1054. doi: 10.1126/science.1127119
- Cebula A., Seweryn M., Rempala G.A., Pabla S.S., McIndoe R.A., Denning T.L., Bry L., Kraj P., Kisielow P., Ignatowicz L. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, vol. 497, no. 7448, pp. 258–262. doi: 10.1038/nature12079
- De Goër de Herve M.G., Jaafoura S., Vallee M., Taoufik Y. Foxp3+ regulatory CD4 T cells control the generation of functional CD8 memory. Nat. Commun., 2012, vol. 3, no. 986. doi: 10.1038/ncomms1992 doi: 10.1038/ncomms1992
- Eberl G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol., 2010, vol. 3, no. 5, pp. 450–460. doi: 10.1038/mi.2010.20
- Everett M.L., Palestrant D., Miller S.E., Bollinger R.R., Parker W. Immune exclusion and immune inclusion: a new model of hostbacterial interactions in the gut. Clin. Appl. Immunol. Rev., 2004, vol. 4, pp. 321–332. doi: 10.1016/j.cair.2004.03.001
- Faria A.M.C., Weiner H.W. Oral tolerance. Immunol. Rev., 2005, vol. 206, pp. 232–259.
- Fontenot J.D., Gavin M.A., Rudensky A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, vol. 4, no. 4, pp. 330–336. doi: 10.1038/ni904
- Frantz A.L., Rogier E.W., Weber C.R., Shen L., Cohen D.A., Fenton L.F., Bruno M.E.C., Kaetzel C.S. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with down-regulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunology, 2012, vol. 5, no. 5, pp. 501–512. doi: 10.1038/mi.2012.23
- Han D., Walsh M.C., Cejas P.J., Dang N.N., Kim Y.F., Kim J., Charrier-Hisamuddin L., Chau L., Zhang Q., Bittinger K., Bushman F.D., Turka L.A., Shen H., Reizis B., DeFranco A.L., Wu G.D., Choi Y. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota-dependent immune tolerance. Immunity, 2013, vol. 38, pp. 1211–1222. doi: 10.1016/j.immuni.2013.05.012
- He B., Xu W., Santini P.A., Polydorides A.D., Chiu A., Estrella J., Shan M., Shadbun A., Villanacci V., Plebani A., Knowles D.M., Rescigno M., Cerutti A. Intestinal bacteria trigger T-cell-independent IgA2 class switching by inducing epithelial cell secretion of the cytokine APRIL. Immunity, 2007, vol. 26, pp. 812–826. doi: 10.1016/j.immuni.2007.04.014
- Herr A.B., Ballister E.R., Bjorkman P.J. Insights into IgA-mediated immune responses from the crystal structures of human FcalphaR1 and its complex with IgA1-Fc. Nature, 2003, vol. 423, pp. 614–620.
- Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol., 2010, vol. 28, pp. 623–667. doi: 10.1146/annurev-immunol-030409-101330
- Honda K., Takeda K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol., 2009, vol. 2, no. 3, pp. 187–196. doi: 10.1038/mi.2009.8
- Hooper J.V., Littman D.R., Macpherson A.J. Interactions between the microbiota and the immune system. Science, 2012, vol. 336, pp. 1268–1273. doi: 10.1126/science.1223490
- Hooper L.V., Stappenbeck T.S., Hong C.V., Gordon J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol., 2003, vol. 4, pp. 269–273. doi: 10.1038/ni888
- Hori S., Nomura N., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, vol. 299, pp. 1057–1061. doi: 10.1126/science.1079490
- Iliev I.D., Mileti E., Matteoli G., Chieppa M., Rescigno M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol., 2009, vol. 2, pp. 340–350. doi: 10.1038/mi.2009.13
- Johansson M.E.V., Holmen Larsson J.M., Hansson G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, suppl. 1, pp. 4659–4665. doi: 10.1073/pnas.1006451107
- Josefowicz S.Z., Lu L.-F., Rudensky A.Y. Regulatory T cells: mechanism of differentiation and function. Annu. Rev. Immunol., 2012, vol. 30, pp. 531–564. doi: 10.1146/annurev.immunol.25.022106.141623
- Josefowicz S.Z., Niec R.E., Kim H.Y., Treuting P., Chinen T., Zheng Y., Umetsu D.T., Rudensky A.Y. Extrathymically generated regulatory T cells control mucosal Th2 inflammation. Nature, 2012, vol. 482, pp. 395–399. doi: 10.1038/nature10772
- Kadaoui K.A., Corthesy B. Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. J. Immunol., 2007, vol. 179, no. 11, pp. 7751–7757. doi: 10.4049/ jimmunol.179.11.7751
- Kaetzel C.S. Coevolution of mucosal immunoglobulins and the polymeric immunoglobulin receptor: evidence that the commensal microbiota provided the driving force. ISRN Immunology, 2014, vol. 2014, pp. 1–20. doi: 10.1155/2014/541537
- Karlsson J., Pütsep K., Chu H., Kays R.J., Bevins C.L., Andersson M. Regional variations in Paneth cell antimicrobial peptide expression along mouse intestinal tract. BMC Immunol., 2008, vol. 9, no. 37. doi: 10.1186/1471-2172-9-37
- Kobayashi K.S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nunez G., Flavell R.A. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 2005, vol. 307, no. 5710, pp. 731–734. doi: 10.1126/science.1104911
- Koropatnick T.A., Engle J.T., Apicella M.A., Stabb E.V., Goldman W.E., McFall-Ngai M.J. Microbial factor-mediated development in a host-bacterial mutualism. Science, 2004, vol. 306, pp. 1186–1188. doi: 10.1126/science.1102218
- Kruglov A.A., Grivennikov S.I., Kuprash D.V., Winsauer C., Prepens S., Seleznik G.M., Ebert G., Littman D.R., Heikenwalder M., Tumanov A.V., Nedospasov S.A. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science, 2013, vol. 342, pp. 1243–1246. doi: 10.1126/science.1243364
- Lathrop S.K., Bloom S.M., Rao S.M., Nutsch K., Lio C.-W., Santakruz N., Peterson D.A., Stappenbeck T.S., Hsieh C.S. Peripheral education of the immune system by colonic commensal microbiota. Nature, 2011, vol. 478, pp. 251–254. doi: 10.1038/nature10434
- Laurin M., Everett M.L., Parker W. The cecal appendix: one more immune component with a function disturbed by post-industrial culture. Anat. Rec., 2011, vol. 294, pp. 567–579. doi: 10.1002/ar.21357
- Licona-Limon P., Henao-Mejia J., Temann A.U., Gagliani N., Licona-Limon I., Ishigame H., Hao L., Herbert D.R., Flavell R.A. Th9 cells drive host immunity against gastrointestinal worm infection. Immunity, 2013, vol. 39, no. 4, pp. 744–757. doi: 10.1016/j.immuni.2013.07.020
- Louahed J., Toda M., Jen J., Hamid Q., Renauld J.C., Levitt R.C., Nicolaides N.C. Interleukin-9 upregulates mucus expression in the airways. Am. J. Respir. Cell. Mol. Biol., 2000, vol. 22, pp. 649–656. doi: 10.1165/ajrcmb.22.6.3927
- Macia L., Thorburn A.N., Binge L.C., Marino E., Rogers K.E., Maslowski K.M., Vieira A.T., Kranich J., Mackay C.R. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol. Rev., 2012, vol. 245, no. 1, pp. 164–176. doi: 10.1111/j.1600-065X.2011.01080.x
- Macpherson A.J., Geuking M.B., McCoy K.D. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol., 2012, vol. 33, no. 4, pp. 160–167. doi: 10.1016/j.it.2012.02.002
- Mantis N.J., Rol N., Corthesy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol., 2011, vol. 4, no. 6, pp. 603–611. doi: 10.1038/mi.2011.41
- Masuda K., Nakamura K., Yoshioka S., Fukaya R., Sakai N., Ayabe T. Regulation of microbiota by antimicrobial peptides in the gut. Adv. Otorhinolaryngol., 2011, vol. 72, pp. 97–99. doi: 10.1159/000324625
- Mathias A., Corthesy B. N-glycans on secretory component. Mediators of the interaction between secretory IgA and Grampositive commensals sustaining intestinal homeostasis. Gut Microbes, 2011, vol. 2, no. 5, pp. 287–293. doi: 10.4161/gmic.2.5.18269
- Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol., 2007, vol. 8, no. 1, pp. 11–13. doi: 10.1038/ni0107-11
- Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, vol. 489, no. 7415, pp. 231–241. doi: 10.1038/nature11551
- McFall-Ngai M. Care for the community. Nature, 2007, vol. 445, p. 153. doi: 10.1038/445153a
- Medzhitov R., Janeway C.A. Decoding the patterns of self and nonself by innate immune system. Science, 2002, vol. 296, pp. 298–300. doi: 10.1126/science.1068883
- Menendez A., Willing B.P., Montero M., Wlodarska M., So C.C., Bhinder G., Vallance B.A., Finlay B.B. Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell α-defensins. J. Innate. Immun., 2013, vol. 5, no. 1, pp. 39–49. doi: 10.1159/000341630
- Mestecky J., Russell M.W. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol. Lett., 2009, vol. 124, pp. 57–62. doi: 10.1016/j.imlet.2009.03.013
- Mkaddem S.B., Rossato E., Heming N., Monteiro R.C. Anti-inflammatory role of the IgA Fc receptor (CD89): from autoimmunity to therapeutic perspectives. Autoimmun. Rev., 2013, vol. 12, pp. 666–669. doi: 10.1016/j.autrev.2012.10.011
- Morgan X.C., Segata N., Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet., 2013, vol. 29, pp. 51–58. doi: 10.1016/j.tig.2012.09.005
- Pabst O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol., 2012, vol. 12, no. 12, pp. 821–832. doi: 10.1038/nri3322
- Pabst O. Traffiking of regulatory T cells in the intestinal immune system. Int. Immunol., 2013, vol. 25, no. 3, pp. 139–143. doi: 10.1093/intimm/dxs113
- Pearson C., Uhlig H.H., Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol., 2012, vol. 33, no. 6, pp. 289–296. doi: 10.1016/j.it.2012.04.004
- Pena J.A., Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by contact-independent mechanism. Cell. Microbiol., 2003, vol. 5, pp. 277–285. doi: 10.1046/j.1462-5822.2003.t01-1-00275.x
- Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe, 2007, vol. 2, pp. 328–339. doi: 10.1016/j.chom.2007.09.013
- Phalipon A., Cardona A., Kraehenbuhl J.-P., Edelman L., Sansonetti P.J., Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity, 2002, vol. 17, pp. 107–115. doi: 10.1016/S1074-7613(02)00341-2
- Putsep K., Axelsson L.G., Boman A., Midtvedt T., Normark S., Boman H.G., Andersson M. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem., 2000, vol. 275, no. 51, pp. 40478–40482. doi: 10.1074/jbc.M007816200
- Renz H., Brandtzaeg P., Hornef M. The impact of perinatal immune development of mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol., 2012, vol. 12, pp. 9–23. doi: 10.1038/nri3112
- Sakaguchi S., Vignali D.A.A., Rudensky A.Y., Niec R.E., Waldman H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol., 2013, vol. 13, no. 6, pp. 461–467. doi: 10.1038/nri3464
- Salzman N.H. Microbiota-immune system interaction: an uneasy alliance. Curr. Opin. Microbiol., 2011, vol. 14, no. 1, pp. 99–105. doi: 10.1016/j.mib.2010.09.018
- Sansonetti P.J., Medzhitov R. Learning tolerance while fighting ignorance. Cell, 2009, vol. 138, pp. 416–420. doi: 10.1016/j.cell.2009.07.024
- Savage P.A., Malchow S., Leventhal D.S. Basic principles of tumor-associated T cell biology. Trends Immunol., 2013, vol. 34, no. 1, pp. 33–40. doi: 10.1016/j.it.2012.08.005
- Schmitt E., Klein M., Bopp T. Th9, new players in adaptive immunity. Trends Immunol., 2014, vol. 35, no. 2, pp. 61–68. doi: 10.1016/j.it.2013.10.004
- Shan M., Gentile M., Yeiser J.R., Walland A.C., Bornstein V.U., Chen K., He B., Cassis L., Bigas A., Cols M., Comerma L., Huang B., Blander J.M., Xiong H., Mayer L., Berin C., Augenlicht L.H., Velcich A., Cerutti A. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, 2013, vol. 342, no. 6157, pp. 447–453. doi: 10.1126/science.1237910
- Smith P.D., Smythies L.E., Shen R., Greenwell-Wild T., Gliozzi M., Wahl S.M. Intestinal macrophages and response to microbial encroachment. Mucosal. Immunol., 2011, vol. 4, no. 1, pp. 31–42. doi: 10.1038/mi.2010.66
- Snoeck V., Peters I.E., Cox E. The IgA system: a comparison of structure and function in different species. Vet. Res., 2006, vol. 37, pp. 455–467. doi: 10.1051/vetres:2006010
- Sonnenberg G.F., Fouser L.A., Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol., 2011, vol. 12, pp. 383–390. doi: 10.1038/ni.2025
- Stappenbeck T.S., Hooper L.V., Gordon J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 24, pp. 15451–15455. doi: 10.1073/pnas.202604299
- Steenwinckel V., Louahed J., Lemaire M.M., Sommereyns C., Warnier G., McKenzie A., Brombacher F., Van Snick J., Renauld J.-C. IL-9 promotes IL-13-dependent Paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol., 2009, vol. 182, pp. 4737–4743. doi: 10.4049/jimmunol.0801941
- Suzuki K., Meek B., Doi Y., Muramatsu M., Chiba T., Honjo T., Fagarasan S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 1981–1986. doi: 10.1073/pnas.0307317101
- Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 2009, vol. 9, pp. 799–809. doi: 10.1038/nri2653
- Weaver C.T., Hatton R.D. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat. Rev. Immunol., 2009, vol. 9, pp. 883–889. doi: 10.1038/nri2660
- Wei M., Shinkura R., Doi Y., Maruya M., Fagarasan S., Honjo T. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol., 2011, vol. 12, pp. 264–270. doi: 10.1038/ni.1991
- Whitman W.B., Coleman D.C., Wiebe W.J. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6578–6583.
- Williams R.C., Gibbons R.J. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science, 1972, vol. 177, pp. 697–699. doi: 10.1126/science.177.4050.697
- Woof J.M., Kerr M.A. IgA function — variations on a theme. Immunology, 2004, vol. 113, pp. 175–177. doi: 10.1111/j.1365-2567.2004.01958.x
- Zhang N., Bevan M.J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity, 2013, vol. 39, no. 4, pp. 687–696. doi: 10.1016/j.immuni.2013.08.019
- Zhao P., Xiao X., Ghobrial R.M., Li X.C. IL-9 and Th9 cells: progress and challenges. Intern. Immunol., 2013, vol. 25, no. 10, pp. 547–551. doi: 10.1093/intimm/dxt039
- Zhu Z., Homer R.J., Wang Z., Chen Q., Geba G.P., Wang J., Zhang Y., Elias J.A. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest., 1999, vol. 103, pp. 779–788. doi: 10.1172/JCI5909