EXPRESSION LEVELS OF MIR-146A AND MIR-155 AND THEIR ASSOCIATION WITH INTERLEUKIN-6 IN TYPE 1 DIABETES
- Authors: Natiq Z.A.1, Nader M.I.2
-
Affiliations:
- Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, for Postgraduate Studies, Baghdad, Iraq
- Section: ORIGINAL ARTICLES
- Submitted: 01.08.2025
- Accepted: 24.08.2025
- URL: https://iimmun.ru/iimm/article/view/17984
- DOI: https://doi.org/10.15789/2220-7619-ELO-17984
- ID: 17984
Cite item
Full Text
Abstract
Abstract
Background: Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by the immune-mediated destruction of pancreatic beta cells, leading to insulin deficiency. Inflammatory cytokines, particularly interleukin-6 (IL-6), play a central role in this pathological process by promoting pro-inflammatory immune responses. Recent evidence highlights the involvement of microRNAs, especially miR-146a and miR-155, in regulating immune cell activation and cytokine signaling pathways. Dysregulation of these microRNAs may disrupt immune homeostasis and contribute to the progression of T1DM.
Aim: This study aimed to investigate the expression levels of miR-146a and miR-155 in patients with type 1 diabetes mellitus and to examine their association with serum interleukin-6 concentrations.
Materials and Methods: This case-control study included 150 participants, comprising 100 individuals diagnosed with type 1 diabetes mellitus and 50 healthy controls. Peripheral blood samples were collected to evaluate fasting blood glucose, glycated hemoglobin, and interleukin-6 levels using an enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction was used to assess the expression of miR-146a and miR-155, normalized to miR-16 as the internal control.
Results: The results revealed significantly elevated levels of fasting blood glucose, glycated hemoglobin, and interleukin-6 in patients compared to controls (p < 0.0001). Additionally, miR-146a expression was increased by a 3.1-fold change, and miR-155 showed a 1.58-fold increase in patients with type 1 diabetes mellitus compared to healthy individuals.
Conclusions: The significant overexpression of microRNAs miR-146a and miR-155, in parallel with elevated serum levels of the pro-inflammatory cytokine interleukin-6, highlights their crucial role in the immunopathogenesis of type 1 diabetes mellitus. These findings suggest that miR-146a and miR-155 may act as key regulators in modulating immune responses, contributing to the autoimmune destruction of pancreatic beta cells. Moreover, the combined assessment of these microRNAs and IL-6 may serve as valuable molecular biomarkers for early diagnosis, disease prognosis, and the development of novel immunomodulatory therapeutic strategies in T1DM management.
Keywords
About the authors
Zahraa Aabdullah Natiq
Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
Email: zahraa.abd2300m@ige.uobaghdad.edu.iq
ORCID iD: 0009-0003-6163-2992
MSc of Genetic Engineering and Biotechnology
ИракMohammed Ibrahim Nader
Institute of Genetic Engineering and Biotechnology, University of Baghdad, for Postgraduate Studies, Baghdad, Iraq
Author for correspondence.
Email: Mohammed@ige.uobaghdad.edu.iq
PhD
ИракReferences
- Addissouky, T. A., Ali, M. M. A., El Sayed, I. E. T., & Wang, Y. (2024). Type 1 diabetes mellitus: retrospect and prospect. Bulletin of the National Research Centre, 48(1), 42. https://doi.org/10.1186/s42269-024-01197-z
- Akil, A. A.-S., Yassin, E., Al-Maraghi, A., Aliyev, E., Al-Malki, K., & Fakhro, K. A. (2021). Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. Journal of Translational Medicine, 19(1), 137. https://doi.org/10.1186/s12967-021-02778-6
- Andreasson, S., Allebeck, P., & Romelsjö, A. (1988). Alcohol and mortality among young men: longitudinal study of Swedish conscripts. British Medical Journal (Clinical Research Ed.), 296(6628), 1021–1025. https://doi.org/10.1136/bmj.296.6628.1021
- Assmann, T. S., Duarte, G. C. K., Brondani, L. A., de Freitas, P. H. O., Martins, É. M., Canani, L. H., & Crispim, D. (2017). Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Acta Diabetologica, 54(5), 433–441. https://doi.org/10.1007/s00592-016-0961-y
- Barić, L. (1966). [The value of phonocardiography in clinical practice]. Lijecnicki Vjesnik, 88(11), 1315–1328. https://europepmc.org/article/med/5988930
- Chen, Y.-L., Qiao, Y.-C., Pan, Y.-H., Xu, Y., Huang, Y.-C., Wang, Y.-H., Geng, L.-J., Zhao, H.-L., & Zhang, X.-X. (2017). Correlation between serum interleukin-6 level and type 1 diabetes mellitus: A systematic review and meta-analysis. Cytokine, 94, 14–20. https://doi.org/10.1016/j.cyto.2017.01.002
- Cho, H., Ha, S. E., Singh, R., Kim, D., & Ro, S. (2025). microRNAs in Type 1 Diabetes: Roles, Pathological Mechanisms, and Therapeutic Potential. International journal of molecular sciences, 26(7), 3301. https://doi.org/10.3390/ijms26073301
- García-Díaz, D. F., Pizarro, C., Camacho-Guillén, P., Codner, E., Soto, N., & Pérez-Bravo, F. (2018). Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers. Archives of endocrinology and metabolism, 62(1), 34–40. https://doi.org/10.20945/2359-3997000000006
- Ghaffari, M., Razi, S., Zalpoor, H., Nabi-Afjadi, M., Mohebichamkhorami, F., & Zali, H. (2023). Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. Journal of diabetes research, 2023, 2587104. https://doi.org/10.1155/2023/2587104
- Grebenciucova, E., & VanHaerents, S. (2023). Interleukin 6: at the interface of human health and disease. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1255533
- Hammed, I. K., Rashid, N. F., & Abed, B. A. (2012). Serum Interleukin-6 level in children with type 1 diabetes mellitus. Journal of the Faculty of Medicine Baghdad, 54(3), 228–230. https://doi.org/10.32007/jfacmedbagdad.543723
- Hundhausen, C., Roth, A., Whalen, E., Chen, J., Schneider, A., Long, S. A., Wei, S., Rawlings, R., Kinsman, M., Evanko, S. P., Wight, T. N., Greenbaum, C. J., Cerosaletti, K., & Buckner, J. H. (2016). Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression. Science Translational Medicine, 8(356). https://doi.org/10.1126/scitranslmed.aad9943
- Husham, S., & Taha, G. (2023). Changes in levels of Interleukin-6 (IL-6) and Interleukin-8 (IL-8) in the Serum of Preterm Delivery Pregnant Women Affected by Gingivitis. Journal of the Faculty of Medicine Baghdad, 65(4).
- https://doi.org/10.32007/jfacmedbagdad.2152
- Ichev, K. (1968). Structural design of the terminal vascular network in the thyroid gland of dog under various functional conditions. Nauchni Trudove Na Visshiia Meditsinski Institut, Sofiia, 47(3), 17–21. https://pubmed.ncbi.nlm.nih.gov/4240164/
- Kamali, K., Korjan, E. S., Eftekhar, E., Malekzadeh, K., & Soufi, F. G. (2016). The role of miR-146a on NF-κB expression level in human umbilical vein endothelial cells under hyperglycemic condition. Bratislava Medical Journal, 117(07), 376–380. https://doi.org/10.4149/BLL_2016_074
- Kroger, C. J., Clark, M., Ke, Q., & Tisch, R. M. (2018). Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.01891
- Liu, G.-J., Zhang, Q.-R., Gao, X., Wang, H., Tao, T., Gao, Y.-Y., Zhou, Y., Chen, X.-X., Li, W., & Hang, C.-H. (2020). MiR-146a Ameliorates Hemoglobin-Induced Microglial Inflammatory Response via TLR4/IRAK1/TRAF6 Associated Pathways. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00311
- Maratni, N. P. T., Saraswati, M. R., Ayu Dewi, N. N., & Suastika, K. (2023). MIRNA146a And Diabetes-Related Complications: A Review. Current Diabetes Reviews, 19(9). https://doi.org/10.2174/1573399819666221014095715
- Mohamed, R. A., Mahmoud, M., Morgan, D. S., Gamal, G. M., & Doudar, N. (2022). Type 1 diabetes mellitus and its genetic association with miR-146a and miR-155 single nucleotide polymorphisms (SNPs). Gene Reports, 26, 101477.
- https://doi.org/10.1016/j.genrep.2021.101477
- Mostahfezian, M., Azhir, Z., Dehghanian, F., & Hojati, Z. (2019). Expression Pattern of microRNAs, miR-21, miR-155 and miR-338 in Patients with Type 1 Diabetes. Archives of Medical Research, 50(3), 79–85. https://doi.org/10.1016/j.arcmed.2019.07.002
- Piganelli, J. D., Mamula, M. J., & James, E. A. (2021). The Role of β Cell Stress and Neo-Epitopes in the Immunopathology of Type 1 Diabetes. Frontiers in Endocrinology, 11. https://doi.org/10.3389/fendo.2020.624590
- Polina, E. R., Oliveira, F. M., Sbruzzi, R. C., Crispim, D., Canani, L. H., & Santos, K. G. (2019). Gene polymorphism and plasma levels of miR-155 in diabetic retinopathy. Endocrine Connections, 8(12), 1591–1599. https://doi.org/10.1530/EC-19-0446
- Pupke, H. (1963). [Evaluation of curves of dosage effects in thick layers]. Archiv Fur Geschwulstforschung, 22(1), 188–192.
- https://pubmed.ncbi.nlm.nih.gov/5831915/
- Raschke, V. N., & Heiderstädt, R. (1988). [Long-term results following retroauricular full-thickness skin grafts for vestibular reconstruction]. Zahn-, Mund-, Und Kieferheilkunde Mit Zentralblatt, 76(1), 43–46.
- https://europepmc.org/article/med/2966521
- Roep, B. O., Thomaidou, S., van Tienhoven, R., & Zaldumbide, A. (2021). Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology, 17(3), 150–161. https://doi.org/10.1038/s41574-020-00443-4
- Soucek, D. J., Cherry, D. S., & Trent, G. C. (2000). Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett’s Creek Watershed, Virginia, USA. Archives of Environmental Contamination and Toxicology, 38(3), 305–310. https://doi.org/10.1007/s002449910040
- TAHA, G. I. (2024). Involvement of IL-10 gene polymorphism (rs1800896) and IL-10 level in the development of periimplantitis. Minerva Dental and Oral Science, 73(5), 264–271. https://doi.org/10.23736/S2724-6329.23.04844-1
- Talib, E. Q., & Taha, G. I. (2024). Involvement of interlukin-17A (IL-17A) gene polymorphism and interlukin-23 (IL-23) level in the development of peri-implantitis. BDJ Open, 10(1), 12. https://doi.org/10.1038/s41405-024-00193-9
- Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295–a016295.
- https://doi.org/10.1101/cshperspect.a016295
- Uchiyama, T. (1984). Studies on hyperthermic chemotherapy for cancer of the esophagus--especially the intraluminal administration with perfusion of BLM containing warmed saline solution. Nihon Geka Hokan. Archiv Fur Japanische Chirurgie, 53(6), 703–720.
- https://pubmed.ncbi.nlm.nih.gov/6085463/
- Walla, P., Endl, W., Lindinger, G., Deecke, & Lang, W. (1999). Implicit memory within a word recognition task: an event-related potential study in human subjects. Neuroscience Letters, 269(3), 129–132.
- https://doi.org/10.1016/s0304-3940(99)00430-9
- Yang, M., Ye, L., Wang, B., Gao, J., Liu, R., Hong, J., Wang, W., Gu, W., & Ning, G. (2015). Decreased mi
R ‐146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1型糖尿病患者外周血单个核细胞miR‐146表达下调与胰岛持续免疫失衡相关. Journal of Diabetes, 7(2), 158–165. - https://doi.org/10.1111/1753-0407.12163
- Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 209. https://doi.org/10.1038/s41392-020-00312-6
- Zarei, M., Sheikholeslami, M. A., Mozaffari, M., & Mortada, Y. (2025). Innovative immunotherapies and emerging treatments in type 1 diabetes management. Diabetes Epidemiology and Management, 17, 100247. https://doi.org/10.1016/j.deman.2024.100247
Supplementary files
