CAR-NK THERAPY: NK CELL EXPANSION EXPOSED TO HEK 293T CELL LINE



Cite item

Full Text

Abstract

Abstract

While creating chimeric antigen receptor (CAR) NK cells, it is necessary to conduct a stage of these immune cell enrichment. Feeder cells are most often used in methods for the effective NK cell expansion. The human embryonic kidney cell line containing the SV40 T-antigen (HEK 293T) is most often used for research purposes in various areas, since it is easily subjected to genetic modifications. This property indicates the potential for modifying HEK 293T cells to express tumor antigens or proinflammatory cytokines, which can be used to activate and enrich NK cells. In this work, we assessed the effect of unmodified HEK 293T cell culture on cytotoxicity and expression of NK and NKT cell activation markers in long-term cultivation in the presence of non-irradiated autologous feeder cells. The study used peripheral blood mononuclear cells collected from healthy volunteer donors. Proliferation was stimulated using antibodies against CD3 and CD28 receptors or mitomycin C-treated HEK 293T cell culture. Cell proliferation was assessed by direct cell counting added with trypan blue dye. Cytotoxicity was determined on HG3, T47D-HER2+, K562 target cultures. Flow cytometry with labeled monoclonal antibodies was used to analyze the expression of surface receptors. Four different methods for lymphocyte activation using HEK 293T were proposed. We found that when using the HEK 293T cell line, an increased percentage of CD3-CD56+ cells in the population was observed in all activation modes, as well as increased expression of NK cell activation markers - NKp30 and NKG2D, in addition, the proportion of CD16+ and CD3+CD4+ lymphocytes increased relative to activation with monoclonal antibodies alone. Of the proposed options for coincubation of lymphocytes with HEK 293T feeder cells, the most effective NK cells expansion was described for the protocol involving the use of the HEK 293T cell line once before the onset of incubation without proliferation additionally stimulated with monoclonal antibodies. This approach resulted in higher proportion of CD56+ lymphocytes reaching to 60% as early as on day 4 of cultivation. Thus, HEK 293T cells stimulate NK cells division, therefore, they can be used as feeder cells in a CAR NK cell product development.

About the authors

Polina Fedorova

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University);
Federal State Budgetary Scientific Institution "Research Institute of Vaccines and Serums them. I.I. Mechnikov ");
Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology

Email: ppolite@mail.ru
ORCID iD: 0000-0001-7478-8783
Scopus Author ID: 57222573207

assistant of microbiology, virology and immunology departmenta, junior researcher of laboratory of applied virologyb; laboratory research assistant of laboratory of cellular immunityc.  Academic degree, academic title: none.

aFederal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University);

bFederal State Budgetary Scientific Institution "Research Institute of Vaccines and Serums them. I.I. Mechnikov ");

cResearch Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology.

Россия, Russia, 119991, Moscow, Trubetskaya str, 8-2; Russia, 105064, Moscow, Malyj Kazennyj lane, 5A; Russia, 115522, Moscow, Kashyrskoe Sh., 24.

Irina Chikileva

Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology

Email: irinatchikileva@mail.ru
ORCID iD: 0000-0003-0769-1695
SPIN-code: 3649-7321

PhD (in biology), senior researcher of laboratory of cellular immunityc

cResearch Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology

Россия, Russia, 115522, Moscow, Kashyrskoe Sh., 24.

Mikhail V. Kiselevskiy

Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology

Author for correspondence.
Email: kisele@inbox.ru
ORCID iD: 0000-0002-0132-167X
SPIN-code: 8687-2387

PhD, MD (Medicine), Professor, Head of the Laboratory of Cell Immunity, Professor, Biomedical Engineering Research and Education Center

Россия, Moscow; Moscow

References

  1. Mazinani, M., Rahbarizadeh, F. New cell sources for CAR-based immunotherapy. Biomark Res. 2023; 11, 49. - https://doi.org/10.1186/s40364-023-00482-9
  2. Chohan KL, Siegler EL, Kenderian SS. CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Curr Hematol Malig Rep. 2023 Apr;18(2):9-18. - https://doi.org/10.1007/s11899-023-00687-7
  3. Choi G, Shin G, Bae S. Price and prejudice? the value of chimeric antigen receptor (CAR) T-cell therapy. Int J Environ Res Public Health. 2022;19(19):12366. - https://doi.org/10.3390/ijerph191912366
  4. Shah N, Li L, McCarty J, Kaur I, Yvon E, Shaim H, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017;177(3):457–66. - https://doi.org/10.1111/bjh.14570
  5. Exley MA, Lynch L, Varghese B, Nowak M, Alatrakchi N, Balk SP. Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin Immunol. 2011;140(2):184–95. - https://doi.org/10.1016/j.clim.2011.04.017
  6. Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T cells to CAR-NK cells: a developing immunotherapy method for hematological malignancies. Front Oncol. 2021;11:720501. - https://doi.org/10.3389/fonc.2021.720501
  7. Gong, Y., Klein Wolterink, R.G.J., Wang, J. et al. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol 14, 73 (2021).
  8. - https://doi.org/10.1186/s13045-021-01083-5
  9. Schmid H, Schneidawind C, Jahnke S, Kettemann F, Secker K-A, Duerr-Stoerzer S, Keppeler H, Kanz L, Savage PB and Schneidawind D (2018) Culture-Expanded Human Invariant Natural Killer T Cells Suppress T-Cell Alloreactivity and Eradicate Leukemia. Front. Immunol. 9:1817.
  10. - https://doi.org/10.3389/fimmu.2018.01817
  11. Pampusch MS, Haran KP, Hart GT, Rakasz EG, Rendahl AK, Berger EA, Connick E, Skinner PJ. Rapid Transduction and Expansion of Transduced T Cells with Maintenance of Central Memory Populations. Mol Ther Methods Clin Dev. 2019 Sep 30;16:1-10. - https://doi.org/10.1016/j.omtm.2019.09.007
  12. Liu Y, Liu Z, Yang Y, Cui J, Sun J, Liu Y. The prognostic and biology of tumour-infiltrating lymphocytes in the immunotherapy of cancer. Br J Cancer. 2023 Oct;129(7):1041-1049. - https://doi.org/10.1038/s41416-023-02321-y
  13. Rölle A, Pollmann J, Ewen E, Le VTK, Halenius A, Hengel H, et al. IL-12- producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest (2014) 124:5305–16. - https://doi.org/10.1172/JCI77440
  14. Phan MT, Kim J, Koh SK, Lim Y, Yu H, Lee M et al. Selective Expansion of NKG2C+ Adaptive NK Cells Using K562 Cells Expressing HLA-E. Int J Mol Sci. 2022 Aug 20;23(16):9426. - https://doi.org/10.3390/ijms23169426
  15. Гельм Ю.В., Пасова И.А., Гривцова Л.Ю., Константинова Т.В., Михайловский Н.В., Рыбачук В.А., Абакушина Е.В., Иванов С.А., Каприн А.Д. Опыт культивирования NK-клеток человека с фидерными клетками in vitro. Медицинская иммунология. 2022;24(3):481-490.
  16. Gelm Yu.V., Pasova I.A., Grivtsova L.Yu., Konstantinova T.V., Mikhaylovsky N.V., Rybachuk V.A., Abakushina E.V., Ivanov S.A., Kaprin A.D. In vitro experience of human natural killer cell culture with feeder cells. Medical Immunology (Russia). 2022;24(3):481-490. (In Russ.) https://doi.org/10.15789/1563-0625-IVE-2481
  17. Ojo EO, Sharma AA, Liu R, Moreton S, Checkley-Luttge MA, Gupta K et al. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep. 2019 Oct 17;9(1):14916. - https://doi.org/10.1038/s41598-019-51287-6
  18. Gómez García LM, Escudero A, Mestre C, Fuster Soler JL, Martínez AP, Vagace Valero JM et al. Phase 2 Clinical Trial of Infusing Haploidentical K562-mb15-41BBL-Activated and Expanded Natural Killer Cells as Consolidation Therapy for Pediatric Acute Myeloblastic Leukemia. Clin Lymphoma Myeloma Leuk. 2021 May;21(5):328-337. - https://doi.org/10.1016/j.clml.2021.01.013
  19. Muñoz Builes M, Vela Cuenca M, Fuster Soler JL, Astigarraga I, Pascual Martínez A, Vagace Valero JM et al. Study protocol for a phase II, multicentre, prospective, non-randomised clinical trial to assess the safety and efficacy of infusing allogeneic activated and expanded natural killer cells as consolidation therapy for paediatric acute myeloblastic leukaemia. BMJ Open. 2020 Jan 8;10(1):e029642. - https://doi.org/10.1136/bmjopen-2019-029642
  20. Wang C, Li N, Li Y, Hou S, Zhang W, Meng Z, Wang S, Jia Q, Tan J, Wang R, Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J Nanobiotechnology. 2022 May 31;20(1):247. - https://doi.org/10.1186/s12951-022-01462-1
  21. Scarrott JM, Johari YB, Pohle TH, Liu P, Mayer A, James DC. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol J. 2023 Mar;18(3):e2200450. - https://doi.org/10.1002/biot.202200450
  22. He X, He Q, Yu W, Huang J, Yang M, Chen W, Han W. Optimized protocol for high-titer lentivirus production and transduction of primary fibroblasts. J Basic Microbiol. 2021 May;61(5):430-442. - https://doi.org/10.1002/jobm.202100008
  23. Gao Y, Bergman I. Anti-tumor memory CD4 and CD8 T-cells quantified by bulk T-cell receptor (TCR) clonal analysis. Front Immunol. 2023 Mar 23;14:1137054. - https://doi.org/10.3389/fimmu.2023.1137054
  24. Tian G, Barragán GA, Yu H, Martinez-Amador C, Adaikkalavan A, Rios X, Guo L, Drabek JM, Pardias O, Xu X, Montalbano A, Zhang C, Li Y, Courtney AN, Di Pierro EJ, Metelitsa LS. PRDM1 is a key regulator of the natural killer T-cell central memory program and effector function. Cancer Immunol Res. 2025 Jan 16. - https://doi.org/10.1158/2326-6066.CIR-24-0259
  25. Lowry LE, Zehring WA. Potentiation of Natural Killer Cells for Cancer Immunotherapy: A Review of Literature. Front Immunol. 2017 Sep 1;8:1061. - https://doi.org/10.3389/fimmu.2017.01061
  26. Bihl F, Germain C, Luci C, Braud VM. Mechanisms of NK cell activation: CD4(+) T cells enter the scene. Cell Mol Life Sci. 2011 Nov;68(21):3457-67. - https://doi.org/10.1007/s00018-011-0796-1
  27. Lowe DB, Shearer MH, Jumper CA, Bright RK, Kennedy RC. Tumor immunity against a simian virus 40 oncoprotein requires CD8+ T lymphocytes in the effector immune phase. J Virol. 2010 Jan;84(2):883-93. - https://doi.org/10.1128/JVI.01512-09
  28. Reus JB, Trivino-Soto GS, Wu LI, Kokott K, Lim ES. SV40 Large T Antigen Is Not Responsible for the Loss of STING in 293T Cells but Can Inhibit cGAS-STING Interferon Induction. Viruses. 2020 Jan 24;12(2):137. - https://doi.org/10.3390/v12020137
  29. Wasylishen AR, Lozano G. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med. 2016 Aug 1;6(8):a026211. - https://doi.org/10.1101/cshperspect.a026211
  30. Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ, Basom RS, Lauer P, Brockstedt DG, Knoblaugh SE, Hämmerling GJ, Schell TD, Garbi N, Greenberg PD. Tumor-Specific T Cell Dysfunction Is a Dynamic Antigen-Driven Differentiation Program Initiated Early during Tumorigenesis. Immunity. 2016 Aug -16;45(2):389-401. - https://doi.org/10.1016/j.immuni.2016.07.011
  31. Malm, M., Saghaleyni, R., Lundqvist, M. et al. Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci Rep. 2020; 10, 18996. - https://doi.org/10.1038/s41598-020-76137-8
  32. Hasan AN, Selvakumar A, Shabrova E, Liu XR, Afridi F, Heller G, Riviere I, Sadelain M, Dupont B, O'Reilly RJ. Soluble and membrane-bound interleukin (IL)-15 Rα/IL-15 complexes mediate proliferation of high-avidity central memory CD8+ T cells for adoptive immunotherapy of cancer and infections. Clin Exp Immunol. 2016 Nov;186(2):249-265. - https://doi.org/ doi: 10.1111/cei.12816
  33. Bae DS, Lee JK. Development of NK cell expansion methods using feeder cells from human myelogenous leukemia cell line. Blood Res. 2014 Sep;49(3):154-61. - https://doi.org/10.5045/br.2014.49.3.154
  34. Palen K, Zurko J, Johnson BD, Hari P, Shah NN. Manufacturing chimeric antigen receptor T cells from cryopreserved peripheral blood cells: time for a collect-and-freeze model? Cytotherapy. 2021 Nov;23(11):985-990. - https://doi.org/10.1016/j.jcyt.2021.07.015
  35. Gurney M, Kundu S, Pandey S, O'Dwyer M. Feeder Cells at the Interface of Natural Killer Cell Activation, Expansion and Gene Editing. Front Immunol. 2022 Feb 11;13:802906. - https://doi.org/10.3389/fimmu.2022.802906

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Fedorova P., Chikileva I., Kiselevskiy M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies