ADAPTIVE NK CELLS ACQUIRE B-LYMPHOCYTE CD19 SURFACE MARKER VIA TROGOCYTOSIS DURING ACTIVATION OF CHRONIC EBV INFECTION



Cite item

Full Text

Abstract

Abstract

In the last decade, there have been reports of NK with low CD19 coexpression in the blood and bone marrow. There is no data on their association with pathology. We have previously shown that CD19+dim NK has an adaptive phenotype. A possible reason for the appearance of CD19 on NK may occur via trogocytosis of B-lymphocytes during active EBV infection.

The aim of study is to identify factors contributing to the appearance of a CD56+CD19+dim NK in the peripheral blood of patients with herpes infection.

Materials and methods.  Blood, saliva, and other biological fluids from 225 patients (34.6±8.5 years, 71% women) were analyzed. Chronic persistent EBV infection was noted in 29%, CMV – in 2.2%, mixed infection – in 10%. IgM to CMV and IgG with avidity were determined in serum; CMV and EBV DNA in biological fluids. Subpopulations of blood lymphocytes were studied by flow cytometry to quantitate CD19+dim NK cell level.

In individuals without IgG to CMV, CD19+dim NK were not determined. A relationship was found between the presence of DNA of each virus and the presence of CD19+dim NK cells. The proportion of CD19+dim NK cells peaked at active replication of both viruses and decreased in the absence of CMV replication. Among individuals with mixed infection, cell subpopulation was identified in the group of younger patients with long-term chronic EBV infection. In this group, no significant changes in the content of total immunoglobulins were detected; no diseases in history that suppress an adequate humoral immunity were observed. Among individuals with mixed infection, but without CD19+dim NK cells, a decrease in total immunoglobulins and the presence of diseases leading to altered production of specific immunoglobulins were more often noted.

The appearance of CD19+dim NK cells in the blood is facilitated by CMV infection, the presence of long-term chronic EBV infection with activation at the time of the study, and an intact humoral immunity. CD19+dim NK cells are not detected in individuals without IgG to CMV, in the absence of EBV activation, in the presence of diseases that lead to impaired humoral immunity. The appearance of the CD56+CD19+dim NK cells in the blood is a consequence of the participation of adaptive NK cells in the antiviral response with a high level of neutralizing antibodies and a marker of trogocytosis of B-cells that have bound EBV. The possibility of the presence of CD19+dim NK cells in the blood must be taken into account when phenotyping B-cells.

About the authors

Anastasia Andreevna Kalashnikova

The Nikiforov Russian Centre of Emergency and Radiation Medicine EMERCOM of Russia, Saint Petersburg, Russia

Email: petkova_nas@mail.ru
ORCID iD: 0000-0002-5338-0866
SPIN-code: 1774-9995
Scopus Author ID: 6602731034
ResearcherId: MBH-9003-2025

PhD (Biology), Senior Researcher, Research Department of Laboratory Diagnostics

Россия, St. Petersburg, st. Optikov, 54

Nataliya Vladimirovna Bychkova

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov, Moscow, Russia

Email: bnv19692007@yandex.ru
ORCID iD: 0000-0002-6907-2817
SPIN-code: 6873-4944

Doctor of Biology, Leading Researcher, Laboratory of Clinical Immunology

Россия, Moscow, st. Academician Oparina, 4

Irina Anisimovna Rakityanskaya

Department of Allergology, Immunology and Clinical Transfusiology, Municipal Outpatient Hospital no. 112, Saint Petersburg, Russia

Author for correspondence.
Email: tat-akyla@inbox.ru
ORCID iD: 0000-0003-2524-4602
SPIN-code: 5777-2740
Scopus Author ID: 6505921346

MD, Clinical Immunologist; Professor, consultant immunologist Outpatient Unit of Allergology, Immunology, and Clinical Transfusiology.

Россия, St. Petersburg, st. Academician Baykova, 25, bldg. 1

References

  1. Дубоносова Е.Ю., Намазова-Баранова Л.С., Вишнева Е.А., Маянский Н.А., Куличенко Т.В., Солошенко М.А. Распространенность цитомегаловирусной инфекции среди подростков в Российской Федерации: результаты одномоментного популяционного анализа серопревалентности // Педиатрическая фармакология. 2021. Т. 18, № 6. С. 451-459. Dubonosova E.Y., Namazova-Baranova L.S., Vishneva E.A., Mayanskiy N.A., Kulichenko T.V., Soloshenko M.A. Cytomegalovirus infection in adolescents of Russian Federation: Results of cross-sectional population analysis of seroprevalence. Pediatric pharmacology (Russia)/Pediatricheskaya farmakologiya, 2021, Vol. 18, no. 6, pp. 451-459. doi: 10.15690/pf.v18i6.2297
  2. Жебрун А.Б., Куляшова Л.Б., Ермоленко К.Д., Закревская А.В. Распространенность герпесвирусных инфекций у детей и взрослых в С.-Петербурге по данным сероэпидемиологического исследования // Журнал микробиологии, эпидемиологии и иммунобиологии. 2013. № 6. С. 30–36. Zhebrun AB, Kulyashova LB, Ermolenko KD, Zakrevskaya AV. Spread of herpesvirus infections in children and adults in St. Petersburg according to seroepidemiologic study data. Žurnal mikrobiologii, èpidemiologii i immunobiologii, 2013, no. 6, pp. 30-36.
  3. Калашникова А.А., Бычкова Н.В. Минорная популяция NK-лимфоцитов с коэкспрессией CD19 // Медицинская иммунология. 2024. Том 26, № 3. С. 513-522. Kalashnikova A.A., Bychkova N.V. Minor population
  4. of NK lymphocytes with CD19 coexpression. Medical
  5. Immunology (Russia)/Meditsinskaya Immunologiya, 2024,
  6. Vol. 26, no. 3, pp. 301-310. doi: 10.15789/1563-0625-MPO-2920
  7. Alari-Pahissa E., Ataya M., Moraitis I., Campos-Ruiz M., Altadill M., Muntasell A., Moles A., Lуpez-Botet M. NK cells eliminate Epstein-Barr virus bound to B cells through a specific antibody-mediated uptake. PLoS Pathog., 2021, vol. 17, no. 8, e1009868. doi: 10.1371/journal.ppat.1009868.
  8. Binder C., Cvetkovski F., Sellberg F., Berg S., Paternina Visbal H., Sachs D.H., Berglund E., Berglund D. CD2 Immunobiology. Front Immunol., 2020, vol. 11, 1090. doi: 10.3389/fimmu.2020.01090.
  9. Bu W., Hayes G.M., Liu H., Gemmell L., Schmeling D.O., Radecki P., Aguilar F., Burbelo P.D., Woo J., Balfour H.H. Jr., Cohen J.I. Kinetics of Epstein-Barr Virus (EBV) Neutralizing and Virus-Specific Antibodies after Primary Infection with EBV. Clin Vaccine Immunol., 2016, vol. 23, no. 4, pp. 363-369. doi: 10.1128/CVI.00674-15.
  10. Chatterjee G., Sriram H., Ghogale S., Deshpande N., Khanka T., Girase K., Verma S., Arolkar G., Dasgupta N., Narula G., Shetty D., Dhamne C., Moulik N.R., Rajpal S., Patkar N.V., Banavali S., Gujral S., Subramanian P.G., Tembhare P.R. Mimics and artefacts of measurable residual disease in a highly sensitive multicolour flow cytometry assay for B-lymphoblastic leukaemia/lymphoma: critical consideration for analysis of measurable residual disease. Br. J. Haematol., 2022, vol. 196, no. 2, pp. 374-379. doi: 10.1111/bjh.17801
  11. Coënon L., and Villalba M. From CD16a Biology to Antibody-Dependent Cell-Mediated Cytotoxicity Improvement. Front Immunol., 2022, vol. 13, 913215. doi: 10.3389/fimmu.2022.913215
  12. Costa-García M., Ataya M., Moraru M., Vilches C., López-Botet M., Muntasell A. Human Cytomegalovirus antigen presentation by HLA-DR+NKG2C+ adaptive NK cells specifically activates polyfunctional effector memory CD4+ T lymphocytes. Front. Immunol., 2019, vol. 10, 687. doi.org/10.3389/fimmu.2019.0068
  13. Davis D.M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol., 2007, vol. 7, pp. 238–243. doi: 10.1038/nri2020
  14. Erdem G., Cua C.L., Basu A., Lee S., Leber A., Abraham R.S. Asymptomatic COVID-19 Reinfection in a Pediatric Patient with Heterotaxy Syndrome. Viral. Immunol., 2023, vol. 36., no. 2., pp. 144-148. doi.org/10.1089/vim.2022.0131
  15. Erokhina S.A., Streltsova M.A., Kanevskiy M.L., Grechikhina M.V., Sapozhnikov A.M., Kovalenko E.I. HLA-DR-expressing NK cells: Effective killers suspected for antigen presentation. J. Leucoc. Biol. 2021, Vol. 109, no. 2, pp. 327-337. doi: 10.1002/JLB.3RU0420-668RR
  16. Gao F., Zhou Z., Lin Y., Shu G., Yin G., Zhang T. Biology and Clinical Relevance of HCMV-Associated Adaptive NK Cells. Front Immunol., 2022, vol. 13, 830396. doi: 10.3389/fimmu.2022.830396
  17. HoWangYin K-YC, Edgardo D.; LeMaoult, Joel Trogocytosis and NK Cells in Mouse and Man. Natural Killer Cells: Springer, 2010. pp. 109–123. doi.org/10.1007/978-3-642-02309-5_5
  18. Korol C., Rossi J., Sanz M., Bernasconi A. NK cells expressing the B cell antigen CD19: Expanding the phenotypical characterization and the potential consequences from misinterpretation of this subset population. Cytometry B Clin. Cytom., 2015, Vol. 88, no. 2, pp. 358-360. doi.org/10.1002/cyto.b.21257
  19. Larsen M.D., de Graaf E.L., Sonneveld M.E., Plomp H.R., Nouta J., Hoepel W., Chen H.J., Linty F., Visser R., Brinkhaus M., Šuštić T., de Taeye S.W., Bentlage A.E.H., Toivonen S., Koeleman C.A.M., Sainio S., Kootstra N.A., Brouwer P.J.M., Geyer C.E., Derksen N.I.L., Wolbink G., de Winther M., Sanders R.W., van Gils M.J., de Bruin S., Vlaar A.P.J., Rispens T., den Dunnen J., Zaaijer H.L., Wuhrer M., Ellen van der Schoot C., Vidarsson G. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science., 2021, Vol. 371, no. 6532 :eabc8378. doi: 10.1126/science.abc8378.
  20. Li W., Morgan R., Nieder R., Truong S., Habeebu S.S.M., Ahmed A.A. Normal or reactive minor cell populations in bone marrow and peripheral blood mimic minimal residual leukemia by flow cytometry. Cytometry B Clin. Cytom., 2021, Vol. 100, no. 5, pp. 531-608. doi.org/10.1002/cyto.b.21968
  21. Liu L.L., Landskron J., Ask E.H., Enqvist M., Sohlberg E., Traherne J. A., Hammer Q., Goodridge J.P., Larsson S., Jayaraman J., Oei V.Y.S., Schaffer M., Taskén K., Ljunggren H.-G., Romagnani C., Trowsdale J., Malmberg K.-J., Béziat V. Critical Role of CD2 Co-stimulation in Adaptive Natural Killer Cell Responses Revealed in NKG2C-Deficient Humans. Cell Rep., 2016, Vol. 15, no. 5, pp. 1088–1099. doi: 10.1016/j.celrep.2016.04.005
  22. Liu W., Scott J.M., Langguth E., Chang H., Park P.H., Kim S. FcRγ Gene editing reprograms conventional NK cells to display key features of adaptive human NK cells. iScience, 2020, Vol. 23, no. 11, 101709. doi: 10.1016/j.isci.2020.101709
  23. Lopes-Verges S., Milush J.M., Schwartz B.S., Pando M.J., Jarioura J., York V.A., Houchins J.P., Miller S., Kang S.M., Norris P.J., Nixon D.F., Lanier L.L. Expansion of a unique CD57+NKG2C+ natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl. Acad. Sci. USA. 2011, Vol. 108, no. 36, pp. 14725-14732. doi.org/10.1073/pnas.1110900108
  24. Lopez-Montañés M., Alari-Pahissa E., Sintes J., Martínez-Rodríguez J.E., Muntasell A., Lуpez-Botet M. Antibody-dependent NK Cell activation differentially targets EBV-infected cells in lytic cycle and bystander B lymphocytes bound to viral antigen-containing particles. J. Immunol., 2017, Vol. 199, no. 2, pp. 656-665. doi.org/10.4049/jimmunol.1601574
  25. Miyake K., Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells., 2021, Vol. 10, no. 5, p.1255. doi: 10.3390/cells10051255
  26. Orange J.S., Harris K.E., Andzelm M.M., Valter M.M., Geha R.S., Strominger J.L. The mature activation natural killer cell immunologic synapse is formed in distinct stages. Proc. Natl. Acad. Sci. USA., 2003, Vol. 100, no. 24, pp. 14151-14156. doi: 10.1073/pnas. 1835830100
  27. Quatrini L., Della Chiesa M., Sivori S., Mingari M.C., Pende D., Moretta L. Human NK cells, their receptors and function. Eur. J. Immunol., 2021, Vol. 51, no. 7, pp. 1566–1579. doi: 10.1002/eji.202049028
  28. Rölle A, Halenius A, Ewen EM, Cerwenka A, Hengel H, Momburg F. CD2–CD58 interactions are pivotal for the activation and function of adaptive natural killer cells in human cytomegalovirus infection. Eur. J. Immunol. 2016, Vol. 46, no 10 2420-2425. doi: 10.1002/eji.201646492
  29. Soma L., Wu D., Chen X., Edlefsen K., Fromm J.R., Wood B. Apparent CD19 expression by natural killers cells: a potential confounder fore minimal residual disease detection by flow cytometry in B lymphoblastic leukemia. Cytometry B Clin. Cytom., 2015, Vol. 88, no. 2, pp. 145-147. doi: 10.1002/cytob.21179
  30. Sun J.C., Beilke J.N., Lewis L.L. Adaptive immune feature of natural killer cells. Nature., 2009, Vol. 457 (7229), pp. 557-561. doi: 10.1038/nature07665
  31. Taylor R.P., Lindorfer M.A. Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments. Blood., 2015, Vol.125, no. 5, pp. 762-766. doi: 10.1182/blood-2014-10-569244
  32. Weiss E.R., Alter G., Ogembo J.G., Henderson J.L., Tabak B., Bakiş Y., Somasundaran M., Garber M., Selin L., Luzuriaga K. High Epstein-Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis. J. Virol., 2016, Vol. 91, no. 1:e01562-16. doi: 10.1128/JVI.01562-16.
  33. Wensveen F.M., Jelenčić V., Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front Immunol., 2018, Vol. 9, 441 doi: 10.3389/fimmu.2018.00441.
  34. Zhang T., Scott J.M., Hwang I., Kim S. Cutting Edge: Antibody-Dependent Memory-Like NK Cells Distinguished by Fcrgamma Deficiency. J Immunol., 2013, Vol. 190, no. 4, pp. 1402–1406. doi: 10.4049/jimmunol.1203034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Kalashnikova A.A., Bychkova N.V., Rakityanskaya I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies