REGULATION OF IMMUNE RESPONSE BY PERMAFROST MICROORGANISM METABOLITES VIA EFFECTOR T-LYMPHOCYTES



Cite item

Full Text

Abstract

Infectious agents have closely interacted with the human immune system, acquiring a set of highly sophisticated mechanisms for modulating immunity. One of the survival strategies for viruses, bacteria, protozoa, helminths and fungi is to target the regulatory T cell network (Treg: CD4+CD25hiCD127-) that controls immunopathogenic responses in many infections. Not only pathogens but also commensals are able to directly induce the conversion of naive T cells into suppressive Foxp3-expressing Tregs, while others activate pre-existing natural Tregs, in both cases suppressing pathogen-specific effector responses. However, Tregs can also contribute to immunity under certain conditions, such as at the initial stages of infection when effector cells must gain access to the site of infection, and subsequently in ensuring the generation of effector memory cells. It is noteworthy that currently little information on whether infections selectively drive pathogen-specific Tregs, and if so, whether such cells are also reactive to autoantigens are available. Further analysis of Treg subset specificity, along with a clearer picture of relative dynamics during the disease, should lead to rational strategies of immune intervention to optimize immunity and eliminate the infectious process. Thus, restoration of Treg function is important in the treatment of infectious, autoimmune and other diseases and can serve as a marker of their successful treatment. The article assesses the effect of exometabolites of derived from permafrost Bacillus bacteria obtained at different temperature conditions of their cultivation on the activity of Treg and effector T lymphocyte differentiation. Significant differences were established: secondary microbial exometabolites affect Treg (CD4+CD25hiCD127-) differentiation and expression of activation markers (CD69, CD25, HLA-DR) on CD4+ and CD8+ T lymphocytes. This effect is regulated by the type of metabolites obtained at different temperatures - "cold" (obtained at 5°C of bacterial incubation), "medium-temperature" (at 22°C) and "heat" (at 37°C) metabolites. In this case, an increase in the Treg level is associated with lower differentiation activity of CD4+ T-lymphocytes exposed to “cold” secondary exometabolites, a decrease in the differentiation activity of CD8+ T-lymphocytes treated with “warm” secondary exometabolites, and a roughly equivalent effect on the differentiation activity of CD4+ and CD8+ T-lymphocytes acted upon by “medium-temperature” secondary exometabolites.

 

About the authors

Sergei Anatolievich Petrov

Tyumen Scientific Centre SB RAS

Author for correspondence.
Email: tumiki@yandex.ru
ORCID iD: 0000-0002-1566-2299
SPIN-code: 8382-8583
Scopus Author ID: 56228113700
ResearcherId: A-7886-2016

Doctor of Medical Sciences, Professor, Chief Researcher of the Department of Cryosphere Bioresources

Россия, 625026, Tyumen, st. Malygina, 86

Yuri Gennadievich Sukhovey

Tyumen Scientific Centre SB RAS

Email: i_yura62@mail.ru
ORCID iD: 0000-0003-3880-2220
Scopus Author ID: 12773610300

Doctor of Medical Sciences, Professor, Chief Researcher of the Department of Cryosphere Bioresources

Россия, 625026, Tyumen, st. Malygina, 86

Lyudmila Fedorovna Kalyonova

Tyumen Scientific Centre SB RAS

Email: lkalenova@mail.ru
ORCID iD: 0000-0002-8897-6520
SPIN-code: 4202-5801
Scopus Author ID: 6507059473
ResearcherId: Н-1023-2017

Doctor of Biological Sciences, Chief Researcher, Department of Cryosphere Bioresources

Россия, 625026, Tyumen, st. Malygina, 86

Elena Gennadievna Kostolomova

State Budgetary Educational Institution of Higher Education «Tyumen State Medical University» of the Ministry of Healthcare of the Russian Federation

Email: lenakost@mail.ru
ORCID iD: 0000-0002-0237-5522
Scopus Author ID: 0000-0002-0237-5522

PhD, Assistant Professor of the Department

Россия, 625000, Tyumen, Odesskaya st., 52

Alexander Alexandrovich Kastornov

Tyumen Scientific Centre SB RAS

Email: alexkastornov@yandex.ru
ORCID iD: 0000-0002-0116-5291
SPIN-code: 7133-1500
Scopus Author ID: 58531589000

Junior Researcher, Department of Cryosphere Bioresources

Россия, 625026, Tyumen, st. Malygina, 86

References

  1. Гариб Ф.Ю., Ризопулу А.П. Использование Т-регуляторных клеток хозяина в стратегии иммунной эвазии патогенов (обзор) // Биохимия. 2015. Т. 80, вып. 8. С. 1141-1159 Garib F.Yu., Rizopulu A.P. T-regulatory cells as part of the strategy of immune evasion by pathogens. Biochemistry. 2015, Vol. 80, issue. 8, P. 1141-1159 (in Russian) https://biochemistrymoscow.com/ru/archive/2015/80-08-1141/
  2. Литвинова Л.С., Гуцол А.А., Сохоневич Н.А., Шуплецова В.В., Кофанова К.А., Хазиахматова О.Г. и др. Основные поверхностные маркеры функциональной активности Т-лимфоцитов //Медицинская иммунология. 2014; 6(1): 7–26. Litvinova L.S., Gutsol A.A., Sokhonevich N.A., Kofanova K.A., Khaziakhmatova O.G. et al. Basic surface markers of functional activity T-lymphocytes. Meditsinskaya immunologiya. - 2014; 6(1): 7-26. (in Russian) https://www.mimmun.ru/mimmun/article/view/18/17
  3. Юрова К.А., Хазиахматова О.Г., Тодосенко Н.М., Литвинова Л.С. Оценка влияния γC-цитокинов (IL-2, IL-7 И IL-15) на экспрессию молекул поздней активации и апоптоза (CD95 И HLA-DR) CD4+/CD8+ Т–лимфоцитами в популяции CD45RA Т–клеток in vitro //Иммунология. 2018; 39(1), С. 20-25 Yurova K.A., Khaziakhmatova O.G., Todosenko N.M., Litvinova L.S. Evaluation of the effect of γccytokines (IL-2, IL-7 and IL-15) on expression of the late activation molecules and apoptosis (CD95 and HLA-DR) CD4+ / CD8+ T-lymphocytes in a population of CD45RA T cells in vitro. Immunologiya. 2018; 39(1): 20-25 (in Russian)]. https:// www.immunologiya-journal.ru/patrns/pdf/2018/Immunology_01-18.pdf [DOI: http://dx.doi. org/10.18821/0206-4952-2018-39-1-20-25][
  4. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011, Vol.331, P.337–341 - • https:// pubmed.ncbi.nlm.nih.gov/21205640/ [doi: 10.1126/science.1198469]
  5. Caramalho I., Lopes Carvalho T., Ostler D., Zelenay S., Haury M. and Demengeot J. (2003) Regulatory T cells selectively express toll like receptors and are activated by lipopolysaccharide. J. Exp. Med., 197, 403–411 - • https:// pubmed.ncbi.nlm.nih.gov/12591899/ [doi: 10.1084/jem.20021633]
  6. Cibrián D., Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur.J.Immunol. 2017, Vol.47, №6, P. 946–953.
  7. - https:// pubmed.ncbi.nlm.nih.gov/28475283/ [ doi: 10.1002/eji.201646837]
  8. Kalenova L.F., Kolyvanova S.S. Effects of Temperature on the Ability of Metabolites from Permafrost Microorganisms to Activate the Synthesis of Systemic Cytokines by Mononuclear Cells. Bulletin of Experimental Biology and Medicine. 2019, Vol.168, №1, Р. 72-75 - https:// pubmed.ncbi.nlm.nih.gov/31761984/ [doi: 10.1007/s10517-019-04650-6.]
  9. Kalenova L.F., Petrov S.A., Bazhin A.S. Dose-Dependent Effect of Bacillus sp. Metabolites from Permafrost on Lymphocyte Differentiation in the Thymus. Bulletin of Experimental Biology and Medicine. 2020, Vol.169, №1, Р.67-70 - https:// pubmed.ncbi.nlm.nih.gov/32488774/ [doi: 10.1007/s10517-020-04826-5]
  10. Kalenova L.F., Petrov S.A., Sukhovei Yu.G. Reparative and Immunomodulatory Potential of Low-Molecular-Weight Fractions of Secondary Metabolites of Bacillus sp. Bulletin of Experimental Biology and Medicine. 2022, Vol. 172, № 3, P.332-336 - • https:// link.springer.com/article/10.1007/s10517-022-05387-5 [doi: 10.1007/s10517-022-05387-5]
  11. Kalenova L.F., Petrov S.A., Subbotin A.M., Narushko M.V., Bazhin A.S. Influence of Paleobacteria on the Proliferative Activity of Human Lymphocytes In Vitro // Bull Exp Biol Med., 2023, 174(6):758-761. - https://pubmed.ncbi.nlm.nih.gov/37162627/ [doi: 10.1007/s10517-023-05787-1]
  12. Kullberg M.C., Jankovic D., Gorelick P.L., Caspar P., Letterio J.J., Cheever A.W. and Sher A. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticusinduced colitis. J. Exp. Med. 2002, Vol.196, P.505–5 - • https:// pubmed.ncbi.nlm.nih.gov/12186842/ [doi: 10.1084/jem.20020556]
  13. Mertens J., Fabri M., Zingarelli A., Kubacki T., Meemboor S., Groneck L., Seeger J., Bessler M., Hafke H., Odenthal M., Bieler J.G., Kalka C. et al. Streptococcus pneumoniae serotype 1 capsular polysaccharide induces CD8CD28 regulatory T lymphocytes by TCR crosslinking. PLoS Pathog. 2009, Vol.5, e100059 - • https:// pubmed.ncbi.nlm.nih.gov/19779562/ [doi: 10.1371/journal.ppat.1000596]
  14. O’Mahony C., Scully P., O’Mahony D., Murphy S., O’Brien F., Lyons A., Sherlock G., MacSharry J., Kiely B., Shanahan F. and O’Mahony L. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kB activation. PLoS Pathog. 2008, Vol.4, e1000112 - • https:// pubmed.ncbi.nlm.nih.gov/18670628/ [doi: 10.1371/journal.ppat.1000112]
  15. Petrov S.A, Sukhovei Yu.G, Kalenova L.F, Kostolomova E.G, Subbotin A.M, Kastornov A.A The Influence of Permafrost Microorganisms on Monocytes Differentiation In Vitro //Bull Exp Biol Med, 2023, 175(3):362-366. - https:// pubmed.ncbi.nlm.nih.gov/37563532/ [doi: 10.1007/s10517-023-05868-1]
  16. Rick M. Maizels and Katherine A. Smith Regulatory T Cells in Infection. Advances in Immunology, 2011. Vo.112, P.73-136 doi: 10.1016/B978-0-12-387827-4.00003-6 - • https:// pubmed.ncbi.nlm.nih.gov/22118407/ [doi: 10.1016/B978-0-12-387827-4.00003-6]
  17. Round J.L. and Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA 2010, Vol.107, P.12204–12209 - • https:// pubmed.ncbi.nlm.nih.gov/20566854/ [doi: 10.1073/pnas.0909122107]
  18. Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T. A. and Mazmanian S.K. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011, Vol.332, P.974–977 - • https:// pubmed.ncbi.nlm.nih.gov/21512004/ [doi: 10.1126/science.1206095]
  19. Sing A., Rost D., Tvardovskaia N., Roggenkamp A., Wiedemann A., Kirschning C.J., Aepfelbacher M., and Heesemann, J. (2002) Yersinia V antigen exploits toll like receptor 2 and CD14 for interleukin 10 mediated immunosuppression. J. Exp. Med., 196, 1017–1024 - • https:// pubmed.ncbi.nlm.nih.gov/12391013/ [doi: 10.1084/jem.20020908]
  20. Shipkova M., Wieland E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin.Chim. Acta. 2012, Vol. 413, № 17-18, Р. 1338–1349 - https:// pubmed.ncbi.nlm.nih.gov/22120733/ [doi: 10.1016/j.cca.2011.11.006]
  21. Sutmuller R.P.M., Morgan M.E., Netea M.G., Grauer O., and Adema, G.J. (2006) Toll like receptors on regulatory T cells: expanding immune regulation. Trends Immunol., 27, 387–393. - • https:// pubmed.ncbi.nlm.nih.gov/16814607/ [doi: 10.1016/j.it.2006.06.005]
  22. Wieland E., Shipkova M. Lymphocyte surface molecules as immune activation biomarkers. Clin. Biochem. 2016, Vol. 49, № 4-5, P. 347–354 - • https:// pubmed.ncbi.nlm.nih.gov/26247177/ [doi: 10.1016/j.clinbiochem.2015.07.099]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Petrov S.A., Sukhovey Y.G., Kalyonova L.F., Kostolomova E.G., Kastornov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies