Phenotype remodeling in neutrophilic granulocyte subsets CD64-CD32+CD16+CD11B+NG, CD64+CD32+CD16+CD11B+NG in de novo experimental model of viral-bacterial infection in vitro

Cover Page


Cite item

Full Text

Abstract

A search for new targeted therapeutic strategies based on examining immunopathogenetic mechanisms for emerging co-infections is relevant and may further contribute not only to optimizing choice of immunotropic drugs, but also to achieving positive clinical and immunological remission for abnormal infectious processes. Previously, our studies found that recurrent viral-bacterial respiratory infections are associated with dysfunction of neutrophilic granulocytes (NG) with varying degree of intensity in altered effector properties. NG dysfunctions are often associated with diverse phenotypic profiles characterized by varying density for expression level of functionally significant trigger receptors. The aim of the study was to pinpoint phenotype transformation in CD64-CD32+CD16+CD11b+, CD64+CD32+CD16+CD11b+ neutrophilic granulocytes in experimental model of viral-bacterial infection in vitro. We examined 52 peripheral blood samples collected from 13 healthy adult volunteers. Viral, bacterial and virus-bacterial infection was modelled in vitro by incubating blood-derived cell samples with formyl-methionyl-leucyl-phenylalanine (fMLP), double-stranded RNA (dsRNA) or in combination followed by assessing changes in immunophenotyping of CD64-CD32+CD16+CD11b+NG, CD64+CD32+CD16+CD11b+NG by using using MAbs CD16-ECD, CD64-FITC, CD32-PE, CD11b-PC5 conjugates (Beckman Coulter International SA, France). It was demonstrated that NGs from healthy adult volunteers were dominated by CD64-CD32+CD16+CD11b+NG as well as minor subset СD64+CD32+CD16+CD11b+ NG varying in expression density of membrane molecules. Percentage of the minor subset СD64+CD16+CD32+CD11b+ NG was significantly increased after exposure with dsRNA, fMLP and dsRNA+fMLP compared to untreated samples. Comparative analysis revealed that various immunotropic agents differed in affecting expression of surface receptor molecules CD16, CD32 and unidirectional effects, but of varying magnitude altering CD11b marker both in major and minor subsets. Preincubation with dsRNA followed by adding fMLP allowed to find that they co-stimulated expression of surface receptors in both NG subsets. We generated an experimental model of viral-bacterial co-infection in vitro by using fMLP and dsRNA and observed types of phenotype transformation in CD64-CD32+CD16+CD11b+ NG and CD64+CD32+CD16+CD11b+ NG subsets. This model can be used to evaluate transformation of other NG subset phenotypes, NG functional activity, features of NET formation as well as impact of various immunotropic agents on NG.

About the authors

I. V. Nesterova

People’s Friendship University of Russia; Kuban State Medical University of Russia

Author for correspondence.
Email: inesterova1@yandex.ru

Irina V. Nesterova - PhD, MD (Medicine), Professor, Department of Allergology and Immunology, PFUR; Head Researcher, Department of Clinical and Experimental Immunology and Molecular Biology of the Central Research Laboratory Kuban SMUR.

117198, Moscow, Miklukho-Maklaya str., 6, Phone: +7 (916) 187-73-41

Russian Federation

G. A. Chudilova

Kuban State Medical University of Russia

Email: chudilova2015@yandex.ru

PhD (Biology), Associate Professor, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FCE and RS, Head of the Department of Clinical and Experimental Immunology and Molecular Biology of the Central Research Laboratory.

Krasnodar

Russian Federation

T. V. Rusinova

Kuban State Medical University of Russia

Email: rusinova.tv@mail.ru

PhD (Biology), Researcher, Department of Clinical and Experimental Immunology and Molecular Biology of the Central Research Laboratory.

Krasnodar

Russian Federation

V. N. Pavlenko

Kuban State Medical University of Russia

Email: pavlenkoevi2016@gmail.com

PhD Student, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FCE and RS, Investigator (Biologist), Department of Clinical Experimental Immunology and Molecular Biology of the Central Research Laboratory.

Krasnodar

Russian Federation

Ya. A. Yutskevich

Kuban State Medical University of Russia

Email: yana.yutskevich@gmail.com

Junior Researcher, Department of Clinical Experimental Immunology and Molecular Biology of the Central Research Laboratory.

Krasnodar

N. K. Barova

Kuban State Medical University of Russia

Email: barovank@mail.ru

PhD (Medicine), Assistant, Department of Pediatric Surgical Diseases.

Krasnodar

Russian Federation

V. A. Tarakanov

Kuban State Medical University of Russia

Email: vatarakanov@yandex.ru

PhD, MD (Medicine), Professor, Head of the Department of Pediatric Surgical Diseases.

Krasnodar

References

  1. Абакумова Т.В., Генинг Т.П., Долгова Д.Р., Антонеева И.И., Песков А.Б., Генинг С.О. Фенотип циркулирующих нейтрофилов на разных стадиях неоплазии шейки матки // Медицинская иммунология. 2019. Т. 21, № 6. С. 1127—1138. doi: 10.15789/1563-0625-2019-6-1127-1138
  2. Балмасова И.П., Малова Е.С., Сепиашвили Р.И. Вирусно-бактериальные коинфекции как глобальная проблема современной медицины // Вестник РУДН. Серия: Медицина. 2018. Т. 22, № 1. С. 29—42. doi: 10.22363/2313-0245-2018-22-1-29-42
  3. Балмасова И.П., Сепиашвили Р.И., Малова Е.С., Ефратова Е.П., Ющук Н.Д. Коинфекция вирусами иммунодефицита человека и гепатита С как модель иммунного ответа на патогены иммунотропного действия // Аллергология и иммунология. 2019. Т. 20, № 1. С. 5—9.
  4. Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы // Инфекция и иммунитет. 2019. Т. 9, № 1. С. 9—38 doi: 10.15789/2220-7619-2019-1-9-38
  5. Долгушин И.И. Нейтрофильные гранулоциты: новые лица старых знакомых // Бюллетень сибирской медицины. 2019. Т. 18 (1). С. 30—37. doi: 10.20538/1682-0363-2019-1-30-37
  6. Егоров А.Ю. Проблема бактериальных осложнений при респираторных вирусных инфекциях // Microbiology Independent Research Journal. 2018. Т. 5, № 1. С. 1—11. doi: 10.18527/2500-2236-2018-5-1-1-11
  7. Ивардава М.И. Место иммуномодуляторов в лечении острой респираторной инфекции у часто болеющих детей // Вопросы современной педиатрии. 2011. Т. 10, № 3. С. 103—107.
  8. Киселева Е.П. Новые представления о противоинфекционном иммунитете // Инфекция и иммунитет. 2011. Т. 1, № 1. С. 9—14. doi: 10.15789/2220-7619-2011-1-9-14
  9. Лобзин Ю.В., Рычкова С.В., Скрипченко Н.В., Усков А.Н., Федоров В.В. Динамика инфекционной заболеваемости у детей в Российской Федерации в 2017—2018 годах // Медицина экстремальных ситуаций. 2019. Т. 21, № 3. С. 340—350.
  10. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет. 2017. Т. 7, № 3. С. 219—230. doi: 10.15789/2220-7619-2017-3-219-230
  11. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8, № 1. С. 7—18. doi: 10.15789/2220-7619-2018-1-7-18
  12. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. 2015. Т. 36, № 4. С. 257— 265.
  13. Нестерова И.В., Нгуен Т.З., Халтурина Е.О., Хайдуков С.В., Гурьянова С.В. Модулирующие эффекты глюкозаминил-мурамилдипептида на трансформированный фенотип субпопуляции IFNa/eR1+IFNYr+TLR4+ нейтрофильных гранулоцитов пациентов с хроническими герпесвирусными инфекциями в эксперименте in vitro // Российский иммунологический журнал. 2018. Т. 12 (21), № 3. С. 379—384.
  14. Пинегин Б.В., Дагиль Ю.А., Воробьева Н.В., Пащенков М.В. Влияние азоксимера бромида на формирование внеклеточных нейтрофильных ловушек // Русский медицинский журнал. 2019. Т. 27, № 1 (II). С. 42—46.
  15. Bourgoin P., Biechele G., Ait Belkacem I., Morange P.E., Malergue F. Role of the interferons in CD64 and CD169 expressions in whole blood: relevance in the balance between viral- or bacterial-oriented immune responses. Immun. Inflamm. Dis., 2020, vol. 8, no. 1, pp. 106—123. doi: 10.1002/iid3.289
  16. Bournazos S., Wang T.T., Ravetch J.V. The role and function of Fcy receptors on myeloid cells. Microbiol. Spectr., 2016, vol. 4, no. 6. doi: 10.1128/microbiolspec.MCHD-0045-2016
  17. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, no. 5663, pp. 1532—1535. doi: 10.1126/science.1092385
  18. Cortjens B., Ingelse S.A., Calis J.C., Vlaar A.P., Koenderman L., Bem R.A. van Woensel J.B. Neutrophil subset responses in infants with severe viral respiratory infection. Clin.Immunol., 2017, vol. 176, pp. 100—106. doi: 10.1016/j.clim.2016.12.012
  19. Dumitru C.A., Moses K., Trellakis S., Lang S., Brandau S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol. Immunother., 2012, vol. 61, no. 8, pp. 1155-1167. doi: 10.1007/s00262-012-1294-5
  20. El-Madbouly A.A., El Sehemawy A.A., Eldesoky N.A., Abd Elgalil H.M., Ahmed A.M. Utility of presepsin, soluble triggering receptor expressed on myeloid cells-1, and neutrophil CD64 for early detection of neonatal sepsis. Infect. Drug Resist., 2019, vol. 12, pp. 311-319. doi: 10.2147/IDR.S191533
  21. El-Raggal N.M., El-Barbary M.N., Youssef M.F., El-Mansy H.A. Neutrophil-surface antigens CD11b and CD64 expression: a potential predictor of early-onset neonatal sepsis. Egypt J. Pediatr. Allergy Immunol., 2004, vol. 2, no. 2, pp. 90-100. doi: 10.1097/INF.0b013e318256fb07
  22. Griffiths Е.С., Pedersen A.B., Fenton A., Petchey O.L. The nature and consequences of coinfection in humans. J. Infect., 2011, vol. 63, no. 3, pp. 200-206. doi: 10.1016/j.jinf.2011.06.005
  23. Grunwell J.R., Giacalone V.D., Stephenson S. Margaroli C., Dobosh B.S., Brown M.R., Fitzpatrick A.M., Tirouvanziam R. Neutrophil dysfunction in the airways of children with acute respiratory failure due to lower respiratory tract viral and bacterial coinfections. Scient. Rep., 2019, vol. 9: 2874. doi: 10.1038/s41598-019-39726-w
  24. Hoffmeyer F., Witte K., Schmidt R.E. The high-affinity FcyRI on PMN: regulation of expression and signal transduction. Immunology, 1997, vol. 92, pp. 544-552. doi: 10.1046/j.1365-2567.1997.00381.x
  25. Ishikawa H., Fukui T., Ino S., Sasaki H., Awano N., Kohda Ch., Tanaka K. Influenza virus infection causes neutrophil dysfunction through reduced G-CSF production and an increased risk of secondary bacteria infection in the lung. Virology, 2016, vol. 499, pp. 23-29. doi: 10.1016/j.virol.2016.08.0252016
  26. Kwon Y.S., Park S.H., Kim M.A., Kim H.J., Park J.S., Lee M.Y., Lee C.W., Dauti S., Choi W.I. Risk of mortality associated with respiratory syncytial virus and influenza infection in adults. BMC Infect. Dis., 2017, vol. 17 (1): 785. doi: 10.1186/s12879-017-2897-4
  27. Lande R., Ganguly D., Facchinetti V., Frasca L., Conrad C., Gregorio J., Meller S., Chamilos G., Sebasigari R., Riccieri V., Bassett R., Amuro H., Fukuhara S., Ito T., Liu Y.J., Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, vol. 3, no. 73: 73ra19. doi: 10.1126/sci-translmed.3001180
  28. Lau D., Mollnau H., Eiserich J.P., Freeman B.A., Daiber A., Gehling U.M., Brummer J., Rudolph V., Munzel T., Heitzer T., Meinertz T., Baldus S. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 2, pp. 431-436. doi: 10.1073/pnas.0405193102
  29. Li S., Huang X., Chen Z., Zhong H., Peng Q., Deng Y., Qin X., Zhao J. Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: a metaanalysis. Int. J. Infect. Dis., 2013, vol. 17, no. 1, pp. 12-23. doi: 10.1016/j.ijid.2012.07.017
  30. Mantovani A., Cassatella M., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol, 2011, vol. 11, pp. 519-531. doi: 10.1038/nri3024
  31. Nailwal H., Chan F.K. Necroptosis in anti-viral inflammation. Cell Death Differ., 2019, vol. 26, no. 1, pp. 4-13. doi: 10.1038/s41418-018-0172-x
  32. Nimmerjahn F., Ravetch J.V. Fc gamma receptors as regulators of immune responses. Nat. Rev. Immunol., 2008, vol. 8, no. 1, pp. 34-47.
  33. Penaloza H.F., Salazar-Echegarai F.J., Bueno S.M. Interleukin 10 modulation of neutrophil subsets infiltrating lungs during Streptococcus pneumoniae infection. Biochem. Biophys. Rep., 2018, vol. 13, pp. 12-16. doi: 10.1016/j.bbrep.2017.11.004
  34. Rollet-Labelle E., Gilbert C., Naccache P.H. Modulation of human neutrophil responses to CD32 cross-linking by serine/threo-nine phosphatase inhibitors: cross-talk between serine/threonine and tyrosine phosphorylation. J. Immunol., 2000, vol. 164, no. 2, pp. 1020-1028. doi: 10.4049/jimmunol.164.2.1020
  35. Sharma-Chawla N., Sender V., Kershaw O., Gruber A.D., Volckmar J., Henriques-Normark B., Stegemann-Koniszewski S., Bruder D. Influenza A Virus infection predisposes hosts to secondary infection with different Streptococcus pneumoniae serotypes with similar outcome but serotype-specific manifestation. Infect. Immun., 2016, vol. 84, no. 12, pp. 3445-3457. doi: 10.1128/IAI.00422-16
  36. Tamassia N., Cassatella M.A., Bazzoni F. Fast and accurate quantitative analysis of cytokine gene expression in human neutrophils. Methods Mol. Biol., 2014, vol. 1124, pp. 451-467. doi: 10.1007/978-1-62703-845-4_279
  37. Tang F.S.M., Van Ly D., Spann K., Reading P.C., Burgess J.K., Hartl D., Baines K.J., Oliver B.G. Differential neutrophil activation in viral infections: enhanced TLR-7/8-mediated CXCL8 release in asthma. Respirology, 2016, vol. 21, no. 1, pp. 172-179. doi: 10.1111/resp.12657
  38. Tan T.L., Ahmad N.S., Nasuruddin D.N., Ithnin A., Tajul Arifin K., Zaini I.Z., Wan Ngah W.Z. CD64 and group II secretory phospholipase A2 (sPLA2-IIA) as biomarkers for distinguishing adult sepsis and bacterial infections in the emergency department. PLoS One, 2016, vol. 11, no. 3: e0152065. doi: 10.1371/journal.pone.0152065
  39. Unkeless J.C., Shen Z., Lin C.W., De Beus E. Function of human Fc gamma RIIA and Fc gamma RIIIB. Semin. Immunol., 1995, vol. 7, no. 1, pp. 37-44. doi: 10.1016/1044-5323(95)90006-3
  40. Van Spriel А.В., Leusen J.H., van Egmond M.W. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood, 2001, vol. 97, no. 8, pp. 2478-2486. doi: 10.1182/blood.V97.8.2478
  41. Youinou P., Durand V., Renaudineau Y., Pennec Y.L., Saraux A., Jamin C. Pathogenic effects of anti-Fc gamma receptor IIIb (CD16) on polymorphonuclear neutrophils in non-organ-specific autoimmune diseases. Autoimmun. Rev., 2002, vol. 1, no. 1-2, pp. 13-19. doi: 10.1016/s1568-9972(01)00002-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Nesterova I.V., Chudilova G.A., Rusinova T.V., Pavlenko V.N., Yutskevich Y.A., Barova N.K., Tarakanov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies