Features of antifungal therapy during long-lasting infectious process: a clinical case of fungal keratitis and profile of antifungal sensitivity based on assessing biofilm formation
- Authors: Valieva R.I.1,2, Lisovskaya S.A.1,2, Mayanskaya K.A.3, Samigullin D.V.4, Isaeva G.S.1,2
-
Affiliations:
- Kazan Research Institute of Epidemiology and Microbiology
- Kazan State Medical University
- Ophthalmological Clinic “Eye Surgery of Rascheskov”
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of RAS
- Issue: Vol 11, No 4 (2021)
- Pages: 789-797
- Section: FOR THE PRACTICAL PHYSICIANS
- Submitted: 01.06.2020
- Accepted: 29.11.2020
- Published: 28.01.2021
- URL: https://iimmun.ru/iimm/article/view/1495
- DOI: https://doi.org/10.15789/2220-7619-FOA-1495
- ID: 1495
Cite item
Full Text
Abstract
Among infectious diseases, opportunistic mycoses hold a special place. There has been accumulating a lot of evidence regarding the clinical and epidemiological aspects of infection caused by Fusarium spp., which global incidence rate among microbial keratitis ranges from 2 to 40% depending on the geographical location of the country. Colonizing mucous membranes, fungi can exist not only in the form of plankton, but form biofilms after surface attachment, which leads to elevated resistance to multiple antifungal agents. Here we describe a clinical case of fungal keratitis due to Fusarium solani by determining profile of the antifungal sensitivity for isolated fungal strains, by taking into account their potential for biofilm formation. We used an F. solani culture isolated from the patient as well as F. solani test culture obtained from the Russian National Collection of Microorganisms. While determining the sensitivity of fungal planktonic cultures to antifungal agents from the azole group (fluconazole, voriconazole), amphotericin B and terbinafine, it was revealed that antimycotics amphotericin B and voriconazole exerted a marked antifungal activity against clinical isolate, whereas the plankton F. solani test culture was more sensitive to all groups of antifungal agents. Due to a long-lasting progressive course of the infectious process and the high biofilm-forming ability of the clinical strain F. solani, the activity of antifungal agents on biofilm cells was modeled and examined in vitro. It was shown that regarding to the fungal biofilms, value of the minimally inhibitory concentration exceeded those for planktonic cultures by 100-fold. The mechanisms of action for antifungal agents on vital parameters of fungal cell structures were analyzed by using confocal laser scanning microscopy after staining samples with propidium iodide and acridine orange for 15 min to detect changes between intact and damaged cell surface. It was found that within the biofilm fungal cells preserved viability even after exposure to high concentrations of antifungals. In addition, despite the fungicidal drug activity at substantial concentrations acting on the biofilm cell membrane, the cell nuclei remained viable. Owing to the presence ot the mechanism of resistance in mycelial fungi shown in the study, it is necessary to take into account and investigate characteristics of biofilms in terms of drug sensitivity that will allow to optimize a choice of antimicrobial therapy.
About the authors
R. I. Valieva
Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University
Author for correspondence.
Email: valievarita@yandex.ru
ORCID iD: 0000-0002-8751-6362
Rita I. Valieva, Junior Researcher, Laboratory of Microbiology; Assistant Professor, V.M. Aristovsky Department of Microbiology
420015, Kazan, Bol'shaya Krasnaya str., 67
Phone: +7 (927) 403-15-07
РоссияS. A. Lisovskaya
Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University
Email: s_lisovskaya@mail.ru
PhD (Biology), Leading Researcher, Laboratory of Micology; Associate Professor, V.M. Aristovsky Department of Microbiology
Kazan
РоссияK. A. Mayanskaya
Ophthalmological Clinic “Eye Surgery of Rascheskov”
Email: kmayansk@gmail.com
Ophthalmologist
Kazan
РоссияD. V. Samigullin
Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of RAS
Email: samid75@mail.ru
PhD (Biology), Senior Researcher, Laboratory of Biophysics of Synaptic Processes
Kazan
РоссияG. Sh. Isaeva
Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University
Email: guisaeva@rambler.ru
PhD, MD (Medicine), Professor, Deputy Director; Head of the V.M. Aristovsky Department of Microbiology
Kazan
РоссияReferences
- Астахов Ю.С., Скрябина Е.В., Коненкова Я.С., Касымов Ф.О., Богомолова Т.С., Пинегина О.Н. Диагностика и лечение грибковых кератитов // Офтальмологические ведомости. 2013. Т. 6, № 2. С. 75–80. [Astakhov Yu.S., Scriabin E.V., Konenkova Y.S., Kasymov F.O., Bogomolova T.S., Pinegin O.N. Diagnosis and treatment of fungal keratitis. Oftalmologicheskie vedomosti = Ophthalmology Journal, 2013, vol. 6, no. 2, pp. 75–80. (In Russ.)] doi: 10.17816/OV11363-73
- Делягин В.М., Мельникова М.Б., Першин Б.С., Серик Г.И., Джандарова Д.Т. Грибковые поражения глаз (диагностика, лечение) // Практическая медицина. 2015. Т. 1. С. 100–105. [Delyagin V.M., Melnikova M.B., Pershin B.S., Serik G.I., Dzhandarova D.T. Fungal eye lesions (diagnosis, treatment). Prakticheskaia meditsina = Practical Medicine, 2015, vol. 1, pp. 100–105. (In Russ.)]
- Мальцев С.В., Мансурова Г.Ш. Что такое биопленка? // Практическая медицина. 2011. T. 5. C. 7–11. [Maltsev S.V., Mansurova G.Sh. What is a biofilm? Prakticheskaya meditsina = Practical Medicine, 2011, vol. 5, pp. 7–11. (In Russ.)] doi: 10.21292/2075-1230-2016-94-8-48-53
- Полтанова Т.И., Белоусова Н.Ю. Рецидив грибкового кератита в роговичном трансплантате // Казанский медицин ский журнал. 2018. Т. 99, № 1. С. 148–150. [Poltanova T.I., Belousova N.Yu. Relapse of fungal keratitis in the corneal graft. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal, 2018, vol. 99, no. 1, pp. 148–150. (In Russ.)] doi: 10.17816/KMJ2018-148
- Рахматулина М.Р., Нечаева И.А. Биопленки микроорганизмов и их роль в формировании резистентности к антибактериальным препаратам // Вестник дерматологии и венерологии. 2015. Т. 91, № 2. C. 58–62. [Rakhmatulin M.R., Nechaev I.A. Biofilms of microorganisms and their role in the formation of resistance to antibacterial drugs. Vestnik dermatologii i venerologii = Bulletin of Dermatology and Venereologists, 2015, vol. 91, no. 2, pp. 58–62. (In Russ.)] doi: 10.25208/0042-4609-2015-91-2-58-62
- Шварц Т.А. Биопленки как микробное сообщество // Вестник КГУ. 2015. № 1. С. 41–44. [Schwartz T.A. Biofilms as a microbial community. Vestnik KGU = Bulletin of KSU, 2015, no. 1, pp. 41–44. (In Russ.)]
- Ansari Z., Miller D., Galor A. Current thoughts in fungal keratitis: diagnosis and treatment. Curr. Fungal Infect. Rep., 2013, vol. 7, no. 3, pp. 209–218. doi: 10.1007/s12281-013-0150-110.1007/s12281-013-0150-1
- Aoun M. Voriconazole: a new weapon against invasive fungal infections. Rev. Med. Brux., 2004, vol. 25, no. 3, pp. 166–171.
- Bayguinov P.O., Oakley D.M., Shih C.C., Geanon D.J., Joens M.S., Fitzpatrick J.A.J. Modern laser scanning confocal microscopy. Curr. Protoc. Cytom., 2018, vol. 85, no. 1, pp. 39–45. doi: 10.1002/cpcy.39
- Bigley V.H., Duarte R.F., Gosling R.D., Kibbler C.C., Seaton S., Potter M. Fusarium dimerum infection in a stem cell transplant recipient treated successfully with voriconazole. Bone Marrow Transplant., 2004, vol. 3, no. 9, pp. 815–817. doi: 10.1038/sj.bmt.1704660
- Bograd A., Seiler T., Droz S., Zimmerli S., Früh B., Tappeiner C. Bacterial and fungal keratitis: a retrospective analysis at a university hospital in Switzerland. Klin. Monatsbl. Augenheilkd., 2019, vol. 236, no. 4, pp. 358–365. doi: 10.1055/a-0774-7756
- CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. 3rd ed. Pennsylvania: CLSI, 2017. 63 p.
- Coleman J.J. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol. Plant. Pathol., 2016, vol. 17, no. 2, pp. 146–158. doi: 10.1111/mpp.12289
- Consigny S., Dhedin N., Datry A., Choquet S., Leblond V., Chosidow O. Successsful voriconazole treatment of disseminated fusarium infection in an immunocompromised patient. Clin. Infect. Dis., 2003, vol. 37, no. 2, pp. 311–313. doi: 10.1086/375842
- De Carolis E., Posteraro B., Lass-Flörl C., Tortorano A.M., Sanguinetti G., Fadda M. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect., 2012, vol. 18, no. 5, pp. 475–484. doi: 10.1111/j.1469-0691.2011.03599.x
- Dignani M.C., Anaissie E. Human fusariosis. Clin. Microbiol. Infect., 2004, vol. 10, no. 1, pp. 67–75. doi: 10.1111/j.1470-9465.2004.00845.x
- Dóczi I., Gyetvai T., Kredics L., Nagy E. Involvement of Fusarium spp. in fungal keratitis. Clin. Microbiol. Infect., 2004, vol. 10, no. 9, pp. 773–776. doi: 10.1111/j.1469-0691.2004.00909.x
- Espinel-Ingroff A., Colombo A.L., Cordoba S. International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob. Agents Chemother., 2015, vol. 60, no. 2, pp. 1079–1084. doi: 10.1128/AAC.02456-15
- Fernandes M., Vira D., Dey M., Tanzin T., Kumar N., Sharma S. Comparison between polymicrobial and fungal keratitis: clinical features, risk factors, and outcome. Amer. J. Ophthalmol., 2015, vol. 160, no. 5, pp. 873–881. doi: 10.1016/j.ajo.2015.07.028
- Chang D.C., Grant G.B., O’Donnell K., Wannemuehler K.A., Noble-Wang J., Rao C.Y., Jacobson L.M., Crowell C.S., Sneed R.S., Lewis F.M., Schaffzin J.K., Kainer M.A., Genese C.A., Alfonso E.C., Jones D.B., Srinivasan A., Fridkin S.K., Park B.J. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA, 2006, vol. 296, no. 8, pp. 953–963. doi: 10.1001/jama.296.8.953
- Guarro J., Pujol I., Mayayo E. In vitro and in vivo experimental activities of antifungal agents against Fusarium solani. Antimicrob. Agents Chemother., 1999, vol. 43, no. 5, pp. 1256–1257. doi: 10.1128/AAC.43.5.1256
- Gupta A.K., Foley K.A. Evidence for biofilms in onychomycosis. Giornale Italiano di Dermatologia e Venereologia, 2019, vol. 154, no. 1, pp. 50–55. doi: 10.23736/S0392-0488.18.06001-7
- Homa M., Galgóczy L., Manikandan P., Narendran V., Sinka R., Csernetics A., Vágvölgyi C., Kredics L., Papp T. South Indian isolates of the Fusarium solani species complex from clinical and environmental samples: identification, antifungal susceptibilities, and virulence. Front. Microbiol., 2018, vol. 9: 1052. doi: 10.3389/fmicb.2018.01052
- Hoog G.S., Guarro J., Gene J., Figueras M.J. Atlas of Clinical Fungi. 2nd edition. Centraalbureau voor Schimmelcultures, Universitat Rovira i Virgili, 2000. 1126 p.
- Lewis R.E., Wiederhold N.P., Klepser M.E. In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrob. Agents Chemother., 2005, vol. 49, no. 3, pp. 945–951. doi: 10.1128/AAC.49.3.945-951.2005
- Mascotti K., McCullough J., Burger S.R. HPC Viability Measurement: trypan blue versus acridine orange and propidium iodide. Transfusion, 2000, vol. 40, no. 6, pp. 693–696. doi: 10.1046/j.1537-2995.2000.40060693.x
- Mayayo E., Pujol I., Guarro J. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol., 1999, vol. 48, no. 4, pp. 363–366.
- Ortoneda M., Capilla J., Pastor F.J., Pujol I., Guarro J. Efficacy of liposomal amphotericin B in treatment of systemic murine fusariosis. Antimicrob. Agents Chemother., 2002, vol. 46, no. 7, pp. 2273–2275. doi: 10.1128/AAC.46.7.2273-2275.2002
- Paphitou N.I., Ostrosky-Zeichner L., Paetznick V.L., Rodriguez J.R., Chen E., Rex J.H. In vitro activities of investigational triazoles against Fusarium species: effects of inoculum size and incubation time on broth microdilution susceptibility test results. Antimicrob. Agents Chemother., 2002, vol. 46, no. 10, pp. 3298–3300. doi: 10.1128/AAC.46.10.3298-3300.2002
- Perfect J.R., Marr K.A., Walsh T.J., Greenberg R.N., DuPont B., de la Torre-Cisneros J., Just-Nübling G., Schlamm H.T., Lutsar I., Espinel-Ingroff A., Johnson E. Voriconazole treatment for less-common, emerging, or refractory fungal infections. Clin. Infect. Dis., 2003, vol. 36, no. 9, pp. 1122–1131. doi: 10.1086/374557
- Pujol I., Guarro J., Gené J., Sala J. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains. J. Antimicrob. Chemother., 1997, vol. 39, no. 2, pp. 163–167. doi: 10.1093/jac/39.2.163
- Sabatelli F., Patel R., Mann P.A., Mendrick C.A., Norris C.C., Hare R., Loebenberg D., Black T.A., McNicholas P.M. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother., 2006, vol. 50, no. 6, pp. 2009–2015. doi: 10.1128/AAC.00163-06
- Tarabishy A.B., Aldabagh B., Sun Y. MyD88 regulation of Fusarium keratitis is dependent on TLR4 and IL-1R1 but not TLR2. J. Immunol., 2008, vol. 181, no. 1, pp. 593–600. doi: 10.4049/jimmunol.181.1.593
- Thomas P.A., Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin. Microbiol. Infect., 2013, vol. 19, no. 3, pp. 210–220. doi: 10.1111/1469-0691.12126
- Van Burik J.A., Magee P.T. Aspects of fungal pathogenesis in humans. Ann. Rev. Microbiol., 2001, vol. 55, pp. 743–772. doi: 0.1146/annurev.micro.55.1.743
- Walther G., Stasch S., Kaerger K., Hamprecht A., Roth M., Cornely O.A., Geerling G., Mackenzie C.R., Kurzai O. Fusarium Keratitis in Germany. J. Clin. Microbiol., 2017, vol. 55, no. 10, pp. 2983–2995. doi: 10.1128/JCM.00649-17
- Wu T.G., Keasler V., Mitchell B.M., Wilhelmus K.R. Immunosuppression affects the severity of experimental Fusarium solani keratitis. J. Infect. Dis., 2004, vol. 190, pp. 192–198. doi: 10.1086/421300