Cytokines and neuro-specific proteins in viral encephalitis and convulsive syndrome in children. II. Convulsive syndrome

Cover Page

Cite item

Abstract

In this Section we provide new data on the pathogenetic factors in pediatric convulsive syndrome, including a prominent role of viral infection in developing seizures and epilepsy (EPL) in children, as evidenced by clinical and experimental studies. Various forms of convulsive syndrome associated with viral infection include febrile convulsions and febrile epileptic status, encephalitis-related acute symptomatic seizures, and postencephalitic epilepsy. The human herpesvirus-6 isolated in temporal lobe epilepsy is a frequent causative agent of febrile seizures and febrile epileptic status. Febrile seizures and, especially, febrile epileptic status are associated with further developing epilepsy. Of special note is the febrile infection-related epileptic syndrome (FIRES) more often affecting school-aged children and characterized by extremely severe course and unfavorable outcome. Convulsive syndrome is associated with systemic inflammation and overproduced pro-inflammatory cytokines that increase permeability of the blood-brain barrier and functional activity of brain-resident cells, which are involved in eliciting seizures and maintaining epileptogenesis. Taking into consideration the key role of inflammation underlying convulsive syndrome, in recent decades cytokines and chemokines have been widely studied as possible prognostic criteria for epileptogenesis. Neuron-specific proteins are examined as markers of brain cell damage in various inflammatory diseases of the central nervous system. The first Section of the review presented current understanding on systemic and local cytokine/chemokine response in viral encephalitis. Here we present clinical trials published within the last 5—7 years assessing cytokines/chemokines and neuron-specific proteins in children with various forms of convulsive syndrome, including epilepsy. Association between biomarker level and disease clinical parameters as well as potential for their use to diagnose and predict its further course are discussed.

About the authors

L. A. Alekseeva

Pediatric Research and Clinical Center for Infectious Diseases

Email: kldidi@mail.ru

PhD, MD (Biology), Head and Leading Researcher of the Department of Clinical Laboratory Diagnostics, Pediatric Research and Clinical Center for Infectious Diseases under the Federal Medical Biological Agency (PRCCID).

197002, St. Petersburg, Prof. Popova str., 9.

Russian Federation

G. F. Zheleznikova

Pediatric Research and Clinical Center for Infectious Diseases

Author for correspondence.
Email: zheleznikova.galina@gmail.com

Galina F. Zheleznikova - PhD, MD (Medicine), Professor, Senior Researcher, Department of Clinical Laboratory Diagnostics, PRCCID.

197002, St. Petersburg, Prof. Popova str., 9.

Phone: +7 905 267-41-32 (mobile)

Russian Federation

E. Y. Gorelik

Pediatric Research and Clinical Center for Infectious Diseases

Email: e.gorelik@mail.ru
ORCID iD: 0000-0002-3130-1717

PhD (Medicine), Researcher, Department of Neuroinfection and Organic Pathology of the Nervous System, PRCCID.

197002, St. Petersburg, Prof. Popova str., 9.

Russian Federation

N. V. Sckripchenko

Pediatric Research and Clinical Center for Infectious Diseases; St. Petersburg State Pediatric Medical University

Email: snv@niidi.ru
ORCID iD: 0000-0001-8927-3176

PhD, MD (Medicine), Professor, Deputy Director of Science, PRCCID; Head of the Department of Infectious Diseases of Postgraduate and Continuing Professional Education, St. Petersburg State Pediatric Medical University of the Ministry of Health of Russia.

197002, St. Petersburg, Prof. Popova str., 9.

Russian Federation

A. A. Zhirkov

Pediatric Research and Clinical Center for Infectious Diseases

Email: ant-zhirkov@yandex.ru
ORCID iD: 0000-0002-7720-2175

Junior Researcher, Department of Clinical Laboratory Diagnostics, PRCCID.

197002, St. Petersburg, Prof. Popova str., 9.

Russian Federation

References

  1. Алексеева Л.А., Железникова Г.Ф., Горелик Е.Ю., Скрипченко Н.В., Жирков А.А. Цитокины и нейроспецифические белки при вирусных энцефалитах и судорожном синдроме у детей. I. Вирусные энцефалиты // Инфекция и иммунитет. 2020. Т. 10, № 4. С. 625—638. doi: 10.15789/22207619CAN1448
  2. Вашура Л.В., Савенкова М.С., Савенков М.П., Калугина М.Ю., Каражас Н.В., Рыбалкина Т.Н., Самсонович И.Р. Значение вируса герпеса 6-го типа в генезе судорожного синдрома у детей // Детские инфекции. 2014. Т. 13, № 4. С. 18-23. doi: 10.22627/2072-8107-2014-13-4-18-23
  3. Горелик Е.Ю., Войтенков В.Б., Скрипченко Н.В., Вильниц А.А., Иванова М.В., Климкин А.В. Острые нейроинфекции и симптоматическая эпилепсия у детей: причинно-следственные связи (обзор литературы) // Журнал инфектологии. 2017. Т. 9, № 3. С. 5-13. doi: 10.22625/2072-6732-2017-9-3-5-13
  4. Горяйнов С.А., Процкий С.В., Охотин В.Е., Павлова Г.В., Ревищин А.В., Потапов А.А. О роли астроглии в головном мозге в норме и патологии // Анналы клинической и экспериментальной неврологии. 2013. Т. 7, № 1. С. 45-51.
  5. Заваденко А.Н., Дегтярева М.Г., Заваденко Н.Н., Медведев М.И. Неонатальные судороги: особенности клинической диагностики // Детская больница. 2013. № 4. C. 41-48.
  6. Мухин К.Ю. Фокальные кортикальные дисплазии: клинико-электро-нейровизуализационные характеристики // Русский журнал детской неврологии. 2016. Т. 11, № 2. C. 8—24. doi: 10.17650/2073-8803-2016-11-2-8-24
  7. Симонова Е.В., Харламова Ф.С., Учайкин В.Ф., Дроздова И.М., Семенова Л.П., Анджель А.Е. Лимбический энцефалит герпесвирусной этиологии // Детские инфекции. 2014. Т. 13, № 4. С. 6—13. doi: 10.22627/2072-8107-2014-13-4-6-13
  8. Скрипченко Н.В., Кривошеенко Е.М., Команцев В.Н., Горелик Е.Ю., Минченко С.И. Гетерогенность судорожного синдрома при инфекционных заболеваниях у детей. Нейроинфекции у детей. СПб: Тактик-Студио, 2015. С. 691—707.
  9. Alapirtti T., Lehtimaki K., Nieminen R., Makinen R., Raitanen J., Moilanen E., Makinen J., Peltola J. The production of IL-6 in acute epileptic seizure: a video-EEG study. J Neuroimmunol., 2018, vol. 316, pp. 50-55. doi: 10.1016/j.jneuroim.2017.12.008
  10. Bartolini L., Libbey J., Ravizza T., Fujinami R., Jacobson S., Gaillard W. Viral triggers and inflammatory mechanisms in pediatric epilepsy. Mol. Neurobiol., 2019, vol. 56, no. 3, pp. 1897-1907. doi: 10.1007/s12035-018-1215-5
  11. Bartolini L., Piras E., Sullivan K., Gillen S., Bumbut A., Lin C., Leibovitch E., Graves J., Waubant E., Chamberlain J., Gaillard W., Jacobson S. Detection of HHV-6 and EBV and cytokine levels in saliva from children with seizures: results of a multi-center crosssectional study. Front. Neurol., 2018, vol. 9: 834. doi: 10.3389/fneur.2018.00834
  12. Bedner P., Dupper A., Huttmann K., Muller J., Herde M., Dublin P., Deshpande T., Schramm J., Haussler U., Haas C., Henneberger C., Theis M., Steinhauser C. Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain, 2015, vol. 138, no. 5, pp. 1208-1222. doi: 10.1093/brain/awv067
  13. Bhalala U., Koehler R., Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front. Pediatr., 2015, vol. 2, pp. 144. doi: 10.3389/fped.2014.00144
  14. Caraballo R., Reyes G., Avaria M., Buompadre M., Gonzalez M., Fortini S., Cersosimo R. Febrile infection-related epilepsy syndrome: a study of 12 patients. Seizure, 2013, vol. 22, no. 7, pp. 553-559. doi: 10.1016/j.seizure.2013.04.005
  15. Chen Q., Li M., Zhang X., Zhang X., Zhong R., Lin W. Association between interleukin-6 gene polymorphisms and febrile seizure risk: a meta-analysis. Medicine (Baltimore), 2019, vol. 98, no. 39: e17167. doi: 10.1097/MD.0000000000017167
  16. Choi J., Choi S., Kim S., Kim H., Lim B., Hwang H., Chae J., Kim K., Oh S., Kim E., Shin J. Association analysis of interleukin-1в, interleukin-6, and HMGB1 variants with postictal serum cytokine levels in children with febrile seizure and generalized epilepsy with febrile seizure plus. J. Clin. Neurol., 2019, vol. 15, no. 4, pp. 555-563. doi: 10.3988/jcn.2019.15.4.555
  17. Choi J., Min H., Shin J. Increased levels of HMGB1 and proinflammatory cytokines in children with febrile seizures. J. Neuroinflammation, 2011, vol. 8: 135. doi: 10.1186/1742-2094-8-135
  18. Choy M., Dube C., Ehrengruber M., Baram T. Inflammatory processes, febrile seizures, and subsequent epileptogenesis. Epilepsy Curr., 2014, vol. 14, no 1, pp. 15-22. doi: 10.5698/1535-7511-14.s2.15
  19. De Vries E., van den Munckhof B., Braun K., van Royen-Kerkhof A., de Jager W., Jansen F. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2016, vol. 63, pp. 177-190. doi: 10.1016/j.neubio-rev.2016.02.007
  20. DeSena A., Do T., Schulert G. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation, 2018, vol. 15, no. 1: 38. doi: 10.1186/s12974-018-1063-2
  21. Gallentine W., Shinnar S., Hesdorffer D., Epstein L., Nordli D., Lewis D., Frank L., Seinfeld S., Shinnar R., Cornett K., Liu B., Moshe S., Sun S. Plasma cytokines associated with febrile status epilepticus in children: a potential biomarker for acute hippocampal injury. Epilepsia, 2017, vol. 58, no. 6, pp. 1102-1111. doi: 10.1111/epi.13750
  22. Gunawan P., Saharso D., Sari D. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. Korean J. Pediatr., 2019, vol. 62, no. 7, pp. 281-285. doi: 10.3345/kjp.2018.07017
  23. Ha J., Choi J., Kwon A., Kim K., Kim S., Bae S., Son J., Kim S., Kwak B., Lee R. Interleukin-4 and tumor necrosis factor-alpha levels in children with febrile seizures. Seizure, 2018, vol. 58, pp. 156-162. doi: 10.1016/j.seizure.2018.04.004
  24. Haque A., Polcyn R., Matzelle D., Banik N. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci., 2018, vol. 8, no. 2, pp. 33. doi: 10.3390/brainsci8020033
  25. He J., Li S., Shu H., Yu S., Liu S., Yin Q., Yang H. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J. Neuropathol. Exp. Neurol., 2013, vol. 72, no. 2, pp. 152-163. doi: 10.1097/NEN.0b013e318281262e
  26. He J., Wu K., Li S., Shu H., Zhang C., Liu S., Yang M., Yin Q., Yang H. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J. Neuroimmunol., 2013, vol. 262, no. 1-2, pp. 85-91. doi: 10.1016/j.jneuroim.2013.05.007
  27. Hu M., Huang G., Wu C., Lin J., Hsia S., Wang H., Lin K. Analysis of plasma multiplex cytokines for children with febrile seizures and severe acute encephalitis. J. Child. Neurol., 2014, vol. 29, no. 2, pp. 182-186. doi: 10.1177/0883073813488829
  28. Ichiyama T., Suenaga N., Kajimoto M., Tohyama J., Isumi H., Kubota M., Mori M., Furukawa S. Serum and CSF levels of cytokines in acute encephalopathy following prolonged febrile seizures . Brain Dev., 2008, vol. 30, no. 1, pp. 47-52. doi: 10.1016/j.braindev.2007.05.008
  29. Ishikawa N., Kobayashi Y., Fujii Y., Kobayashi M. Increased interleukin-6 and high-sensitivity C-reactive protein levels in pediatric epilepsy patients with frequent, refractory generalized motor seizures. Seizure, 2015, vol. 25, pp. 136-140. doi: 10.1016/j.seizure.2014.10.007
  30. Kacinski M., Budziszewska B., Lason W., Zaj^c A., Skowronek-Bala B., Leskiewicz M., Kubik A., Basta-Kaim A. Level of S100B protein, neuron specific enolase, orexin A, adiponectin and insulin-like growth factor in serum of pediatric patients suffering from sleep disorders with or without epilepsy. Pharmacol. Rep., 2012, vol. 64, no. 6, pp. 1427-1433. doi: 10.1016/s1734-1140(12)70940-4
  31. Kenney-Jung D., Vezzani A., Kahoud R., LaFrance-Corey R., Ho M., Muskardin T., Wirrell E., Howe C., Payne E. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol., 2016, vol. 80, no. 6, pp. 939-945. doi: 10.1002/ana.24806
  32. Kim K., Kwak B., Kwon A., Ha J., Kim S., Bae S., Son J., Kim S., Lee R. Analysis of plasma multiplex cytokines and increased level of IL-10 and IL-1Ra cytokines in febrile seizures. J. Neuroinflammation, 2017, vol. 14, no. 1: 200. doi: 10.1186/s12974-017-0974-7
  33. Kimizu T., Takahashi Y., Oboshi T., Horino A., Omatsu H., Koike T., Yoshitomi S., Yamaguchi T., Otani H., Ikeda H., Imai K., Shigematsu H., Inoue Y. Chronic dysfunction of blood-brain barrier in patients with post-encephalitic/encephalopathic epilepsy. Seizure, 2018, vol. 63, pp. 85—90. doi: 10.1016/j.seizure.2018.11.005
  34. Kobylarek D., Iwanowski P., Lewandowska Z., Limphaibool N., Szafranek S., Labrzycka A., Kozubski W. Advances in the potential biomarkers of epilepsy. Front. Neurol., 2019, vol. 10: 685. doi: 10.3389/fneur.2019.00685
  35. Koh S. Role of neuroinflammation in evolution of childhood epilepsy. J. Child. Neurol., 2018, vol. 33, no. 1, pp. 64—72. doi: 10.1177/0883073817739528
  36. Kothur K., Bandodkar S., Wienholt L., Chu S., Pope A., Gill D., Dale R. Etiology is the key determinant of neuroinflammation in epilepsy: elevation of cerebrospinal fluid cytokines and chemokines in febrile infection-related epilepsy syndrome and febrile status epilepticus. Epilepsia, 2019, vol. 60, no. 8, pp. 1678—1688. doi: 10.1111/epi.16275
  37. Kramer U., Chi C., Lin K., Specchio N., Sahin M., Olson H., Nabbout R., Kluger G., Lin J., van Baalen A. Febrile infection-related epilepsy syndrome (FIRES): pathogenesis, treatment, and outcome: a multicenter study on 77 children. Epilepsia, 2011, vol. 52, no. 11, pp. 1956-1965. doi: 10.1111/j.1528-1167.2011.03250.x
  38. Kumar P., Chan D., Lim A., Paleja B., Ling S., Yun L., Poh S., Ngoh A., Arkachaisri T., Yeo J., Albani S. Pro-inflammatory, IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight, 2019, vol. 4, no. 8: e126337. doi: 10.1172/jci.insight.126337
  39. Kwon A., Kwak B., Kim K., Ha J., Kim S., Bae S., Son J., Kim S., Lee R. Cytokine levels in febrile seizure patients: a systematic review and meta-analysis. Seizure, 2018, vol. 59, pp. 5-10. doi: 10.1016/j.seizure.2018.04.023
  40. Mao L., Ding J., Peng W., Ma Y., Zhang Y., Fan W., Wang X. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia, 2013, vol. 54, no. 9: e142-5. doi: 10.1111/epi.12337
  41. Mikkonen K., Pekkala N., Pokka T., Romner B., Uhari M., Rantala H. S100B proteins in febrile seizures. Seizure, 2012, vol. 21, no. 2, pp. 144-146. doi: 10.1016/j.seizure.2011.10.006
  42. Numis A., Foster-Barber A., Deng X., Rogers E., Barkovich A., Ferriero D., Glass H. Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr. Res., 2019, vol. 86, no. 5, pp. 616-621. doi: 10.1038/s41390-019-0473-x
  43. Patterson K., Baram T., Shinnar S. Origins of temporal lobe epilepsy: febrile seizures and febrile status epilepticus. Neurotherapeutics, 2014, vol. 11, no. 2, pp. 242-250. doi: 10.1007/s13311-014-0263-4
  44. Pillai S., Mohammad S., Hacohen Y., Tantsis E., Prelog K., Barnes E., Gill D., Lim M., Brilot F., Vincent A., Dale R. Postencephalitic epilepsy and drug-resistant epilepsy after infectious and antibody-associated encephalitis in childhood: clinical and etiologic risk factors. Epilepsia, 2016, vol. 57, no. 1, pp. e7-e11. doi: 10.1111/epi.13253
  45. Pisani F., Piccolo B., Cantalupo G., Copioli C., Fusco C., Pelosi A., Tassinari C., Seri S. Neonatal seizures and postneonatal epilepsy: a 7-y follow-up study. Pediatr. Res., 2012, vol. 72, no. 2, pp. 186-193. doi: 10.1038/pr.2012.66
  46. Saghazadeh A., Mastrangelo M., Rezaei N. Genetic background of febrile seizures. Rev. Neurosci., 2014, vol. 25, no. 1, pp. 129161. doi: 10.1515/revneuro-2013-0053
  47. Sakuma H., Tanuma N., Kuki I., Takahashi Y., Shiomi M., Hayashi M. Intrathecal overproduction of proinflammatory cytokines and chemokines in febrile infection-related refractory status epilepticus. J. Neurol. Neurosurg. Psychiatry, 2015, vol. 86, no. 7, pp. 820-822. doi: 10.1136/jnnp-2014-309388
  48. Serino D., Santarone M., Caputo D., Fusco L. Febrile infection-relate epilepsy syndrome (FIRES): prevalence, impact and management strategies. Neuropsychiatr. Dis. Treat., 2019, vol. 15, pp. 1897-1903. doi: 10.2147/NDT.S177803
  49. Shi L., Chen R., Zhang H., Jiang C., Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1 в and erythropoietin concentrations in children after seizures. Child's Nerv. Syst., 2017, vol. 33, no. 5, pp. 805-811. doi: 10.1007/s00381-017-3359-4
  50. Shiihara T., Miyake T., Izumi S., Sugihara S., Watanabe M., Takanashi J., Kubota M., Kato M. Serum and CSF biomarkers in acute pediatric neurological disorders. Brain Dev., 2014, vol. 36, no. 6, pp. 489-495. doi: 10.1016/j.braindev.2013.06.011
  51. Uludag I., Bilgin S., Zorlu Y., Tuna G., Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure, 2013, vol. 22, no. 6, pp. 457-461. doi: 10.1016/j.seizure.2013.03.004
  52. Van Baalen A., Vezzani A., Hausler M., Kluger G. Febrile infection-related epilepsy syndrome: clinical review and hypotheses of epileptogenesis. Neuropediatrics, 2017, vol. 48, no. 1, pp. 5-18. doi: 10.1055/s-0036-1597271
  53. Vargas-Sanchez K., Mogilevskaya M., Rodrlguez-Perez J., Rubiano M., Javela J., Gonzalez-Reyes R. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget, 2018, vol. 9, no. 42, pp. 26954-26976. doi: 10.18632/oncotarget.25485
  54. Vezzani A., Aronica E., Mazarati A., Pittman Q. Epilepsy and brain inflammation. Exp. Neurol., 2013, vol. 244, pp. 11-21. doi: 10.1016/j.expneurol.2011.09.033
  55. Vezzani A., Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology, 2015, vol. 96, pp. 70-82. doi: 10.1016/j.neuropharm.2014.10.027
  56. Vitaliti G., Pavone P., Marino S., Saporito M., Corsello G., Falsaperla R. Molecular mechanism involved in the pathogenesis of early-onset epileptic encephalopathy. Front. Mol. Neurosci., 2019, vol. 12, pp. 118. doi: 10.3389/fnmol.2019.00118
  57. Walker L., Janigro D., Heinemann U., Riikonen R., Bernard C., Patel M. WONOEP appraisal: molecular and cellular biomarkers for epilepsy. Epilepsia, 2016, vol. 57, no. 9, pp. 1354-1362. doi: 10.1111/epi.13460
  58. Wilcox K., Vezzani A. Does brain inflammation mediate pathological outcomes in epilepsy? Adv. Exp. Med. Biol., 2014, vol. 813, pp. 169-183. doi: 10.1007/978-94-017-8914-1_14
  59. Wipfler P., Dunn N., Beiki O., Trinka E., Fogdell-Hahn A. The viral hypothesis of mesial temporal lobe epilepsy — is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure, 2018, vol. 54, pp. 33-40. doi: 10.1016/j.seizure.2017.11.015
  60. Xanthos D., Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci., 2014, vol. 15, no. 1, pp. 43-53. doi: 10.1038/nrn3617
  61. Xu D., Robinson A., Ishii T., Duncan D., Alden T., Goings G., Ifergan I., Podojil J., Penaloza-MacMaster P., Kearney J., Swanson G., Miller S., Koh S. Peripherally derived T regulatory and y§ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med., 2018, vol. 215, no. 4, pp. 1169-1186. doi: 10.1084/jem.20171285
  62. Youn Y., Kim S., Sung I., Chung S., Kim Y., Lee I. Serial examination of serum IL-8, IL-10 and IL-1Ra levels is significant in neonatal seizures induced by hypoxic-ischaemic encephalopathy. Scand. J. Immunol., 2012, vol. 76, no. 3, pp. 286-293. doi: 10.1111/j.1365-3083.2012.02710.x
  63. Zhu M., Chen J., Guo H., Ding L., Zhang Y., Xu Y. High mobility group protein B1 (HMGB1) and interleukin-1e as prognostic biomarkers of epilepsy in children. J. Child Neurol., 2018, vol. 33, no. 14, pp. 909-917. doi: 10.1177/0883073818801654

Supplementary files

There are no supplementary files to display.


Copyright (c) 2020 Alekseeva L.A., Zheleznikova G.F., Gorelik E.Y., Sckripchenko N.V., Zhirkov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies