Нейтрофильные гранулоциты: участие в гомеостатических и репаративных процессах. Часть I

Обложка


Цитировать

Полный текст

Аннотация

После выхода из костного мозга (КМ) в кровообращение зрелые нейтрофильные гранулоциты в отсутствие воспаления претерпевают ряд фенотипических и физиологических изменений, в комплексе названных «старением», конститутивно получая праймирующие сигналы от комменсальной микробиоты и приобретая большую функциональную готовность в случае активации при травматизации тканей или инвазии патогенов. Физиологическое старение нейтрофилов в крови и последующее их возвращение в КМ генерирует сигналы, модулирующие размер и функции гемопоэтической ниши. Циркадная физиологическая инфильтрация КМ нейтрофилами содействует поддержанию базового уровня внекостномозговых гемопоэтических клеток-предшественников, обладающих функциями регенерации и иммунного наблюдения. Помимо КМ, нейтрофилы активно проникают и в другие здоровые ткани, вероятно, оказывая действие на их базальную физиологию. На примере легочной ткани показано, что нейтрофилы могут «управлять» работой ряда генов, регулирующих клеточный рост, миграцию, пролиферацию, дифференцировку клеток и канцерогенез. Нейтрофильные гранулоциты принимают участие в деструкции эндометриальных тканей во время фазы десква-мации, в последующей их репарации и физиологическом ангиогенезе в пролиферативной фазе менструального цикла; участвуют в процессе разрыва стенки преовуляторного фолликула яичников и выхода ооцита; способствуют деградации и рассасыванию желтого тела при ненаступлении беременности; играют важную физиологическую роль в ремоделировании сосудов беременной матки и формировании материнской иммунной толерантности по отношению к полуаллогенному плоду. При инфекции и/или повреждении слизистой оболочки кишечника активно мигрирующие на поверхность кишечного эпителия нейтрофилы стимулируют реституцию эпителия и восстановление его барьерной функции. Рекрутированные в ротовую полость нейтрофилы регулируют количественный и качественный состав микробных сообществ оральных биопленок, отвечают за обеспечение здоровья пародонтальных структур. Являясь основным участником и регулятором заживления кожных ран на ранней стадии, стадии воспаления, нейтрофилы не только уничтожают возможных патогенов, но также участвуют в очищении раны от клеточного дебриса, генерируют цитокины, ферменты, ростовые факторы, влияющие на дальнейшие этапы процесса репарации. И апоптоз, и нетоз, являясь механизмами гибели нейтрофилов, вносят огромный вклад в процесс заживления ран. Однако дисрегуляция и нарушение баланса как апоптоза, так и нетоза могут приводить к негативным последствиям с формированием хронических, длительно незаживающих ран.

Об авторах

И. И. Долгушин

ФГБОУ Южно-Уральский государственный медицинский университет Минздрава России

Email: alena_mez_75@mail.ru
Челябинск Россия

Е. А. Мезенцева

ФГБОУ Южно-Уральский государственный медицинский университет Минздрава России

Автор, ответственный за переписку.
Email: alena_mez_75@mail.ru

 

Мезенцева Елена Анатольевна - кафедра Микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики, доцент, SPIN-код автора: 3063-5739.

454092, Челябинск, ул. Воровского, 64, Тел.: 8 902 892-28-43

 

. Россия

Список литературы

  1. Долгушин И.И., Бухарин О.В. Нейтрофилы и гомеостаз. Екатеринбург: УрО РАН, 2001. 288 с.
  2. Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы // Инфекция и иммунитет. 2019. Т. 9, № 1. С. 9—38. doi: 10.15789/2220-7619-2019-1-9-38 (In Russ.)
  3. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. 2015. Т. 36, № 4. С. 257— 265.
  4. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет. 2017. Т. 7, № 3. C. 219-230. 10.15789/2220-7619-2017-3-219-230 (In Russ.)
  5. Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8, № 1. C. 7-18. doi: 10.15789/2220-7619-2018-1-7-18 (In Russ.)
  6. Нефедова Н.А., Харлова О.А., Данилова Н.В., Мальков П.Г., Гайфуллин Н.М. Маркеры ангиогенеза при опухолевом росте // Архив патологии. 2016. Т. 78, № 2. С. 55-63. doi: 10.17116/patol201678255- 62 (In Russ.)
  7. Хмель И.А., Белик А.С., Зайцева Ю.В., Данилова Н.Н. Quorum sensing и коммуникация бактерий // Вестник Московского университета. Серия 16: Биология. 2008. № 1. С. 28-35.
  8. Цепколенко А.В. Иммунная система и регенеративный потенциал кожи // Дерматолопя та венеролопя. 2017. № 3 (77). С. 27-37.
  9. Abdallah F., Mijouin L., Pichon C. Skin immune landscape: inside and outside the organism. MediatorsInflamm, 2017, vol. 2017, Article ID 5095293,17pages. doi: 10.1155/2017/5095293
  10. Adrover J.M., Nicolas-Avila J.A., Hidalgo A. Aging: a temporal dimension for neutrophils. Trends Immunol., 2016, vol. 37, iss. 5, pp. 334-345. doi: 10.1016/j.it.2016.03.005
  11. Barker H., Aaltonen M., Pan P., Vahatupa M., Kaipiainen P., May U., Prince S., Uusitalo-Jarvinen H., Waheed A., Pastorekova S., Sly W.S., Parkkila S., Jarvinen T.A. Role of carbonic anhydrases in skin wound healing. Exp. Mol. Med., 2017, vol. 49, iss. 5: e334. doi: 10.1038/emm.2017.60
  12. Barletta K.E., Cagnina R.E., Wallace K.L., Ramos S.I., Mehrad B., Linden J. Leukocyte compartments in the mouse lung: distinguishing between marginated, interstitial, and alveolar cells in response to injury. J. Immunol. Methods, 2012, vol. 375, iss. 1-2, pp. 100-110. doi: 10.1016/j.jim.2011.09.013
  13. Bekeschus S., Lackmann J.W., Gumbel D., Napp M., Schmidt A., Wende K. A neutrophil proteomic signature in surgical trauma wounds. Int. J. Mol. Sci., 2018, vol. 19, iss. 3: 761. doi: 10.3390/ijms19030761
  14. Bekkering S., Torensma R. Another look at the life of a neutrophil. World J. Hematol., 2013, vol. 2, iss. 2, pp. 44-58. doi: 10.5315/wjh.v2.i2.44
  15. Bennewitz M.F., Watkins S.C., Sundd P. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice. Intravital, 2014, vol. 3, iss. 2: e29748. doi: 10.4161/intv.29748
  16. Bernardini G., Ribatti D., Spinetti G., Morbidelli L., Ziche M., Santoni A., Capogrossi M.C., Napolitano M. Analysis of the role of chemokines in angiogenesis. J. Immunol. Methods, 2003, vol. 273, iss. 1-2, pp. 83-101. doi: 10.1016/S0022-1759(02)00420-9
  17. Blasi F., Carmeliet P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 932-943. doi: 10.1038/nrm977
  18. Borregaard N. Neutrophils, from marrow to microbes. Immunity, 2010, vol. 33, iss. 5, pp. 657-670. doi: 10.1016/j.immu-ni.2010.11.011
  19. Bos J.D., Kapsenberg M.L. The skin immune system its cellular constituents and their interactions. Immunol. Today, 1986, vol. 7, iss. 7-8, pp. 235-240. doi: 10.1016/0167-5699(86)90111-8
  20. Bratton D.L., Henson P.M. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol., 2011, vol. 32, iss. 8, pp. 350-357. doi: 10.1016/j.it.2011.04.009
  21. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, iss. 5663, pp. 1532-1535. doi: 10.1126/science.1092385
  22. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, vol. 414, iss. 6865, pp. 813-820. doi: 10.1038/414813a
  23. Casanova-Acebes M., Nicolas-Avila J.A., Li J.L., Garcia-Silva S., Balachander A., Rubio-Ponce A., Weiss L.A., Adrover J.M., Burrows K., A-Gonzalez N., Ballesteros I., Devi S., Quintana J.A., Crainiciuc G., Leiva M., Gunzer M., Weber C., Nagasawa T., Soehnlein O., Merad M., Mortha A., Ng L.G., Peinado H., Hidalgo A. Neutrophils instruct homeostatic and pathological states in naive tiss. J. Exp. Med, 2018, vol. 215, no. 11, pp. 2778-2795. doi: 10.1084/jem.20181468
  24. Casanova-Acebes M., Pitaval C., Weiss L.A., Nombela-Arrieta C., Chevre R., A-Gonzalez N., Kunisaki Y., Zhang D., van Rooijen N., Silberstein L.E., Weber C., Nagasawa T., Frenette P.S., Castrillo A., Hidalgo A. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, vol. 153, iss. 5, pp. 1025-1035. doi: 10.1016/j.cell.2013.04.040
  25. Christoffersson G., Phillipson M. The neutrophil: one cell on many missions or many cells with different agendas? Cell Tissue Res, 2018, vol. 371, iss. 3, pp. 415-423. doi: 10.1007/s00441-017-2780-z
  26. Darby I.A., Bisucci T., Hewitson T.D., MacLellan D.G. Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. Int. J. Biochem. Cell Biol., 1997, vol. 29, iss. 1, pp. 191-200. doi: 10.1016/S1357-2725(96)00131-8
  27. De Filippo K., Rankin S.M. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, special iss.: Neutrophils: e12949. doi: 10.1111/eci.12949
  28. Delgado-Rizo V., Martfnez-Guzman M.A., Iniguez-Gutierrez L., Garcia-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front. Immunol., 2017, vol. 8: 81. doi: 10.3389/fimmu.2017.00081
  29. Devi S., Wang Y., Chew W.K., Lima R., A-Gonzalez N., Mattar C.N., Chong S.Z., Schlitzer A., Bakocevic N., Chew S., Keeble J.L., Goh C.C., Li J.L., Evrard M., Malleret B., Larbi A., Renia L., Haniffa M., Tan S.M., Chan J.K., Balabanian K., Nagasawa T., Bachelerie F., Hidalgo A., Ginhoux F., Kubes P., Ng L.G. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med., 2013, vol. 210, no. 11, pp. 2321-2336. doi: 10.1084/jem.20130056
  30. Diegelmann R.F. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen., 2003, vol. 11, iss. 6, pp. 490495. doi: 10.1046/j.1524-475X.2003.11617.x
  31. Doerschuk C.M. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation, 2001, vol. 8, iss. 2, pp. 71-88. doi: 10.1111/j.1549- 8719.2001. tb00159.x
  32. Doerschuk C.M., Beyers N., Coxson H.O., Wiggs B., Hogg J.C. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J. Appl. Physiol., 1993, vol. 74, iss. 6,pp. 3040-3045. doi: 10.1152/jappl.1993.74.6.3040
  33. Eash K.J., Means J.M., White D.W., Link D.C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, vol. 113, iss. 19,pp. 4711-4719. doi: 10.1182/blood-2008-09-177287
  34. Eash K.J., Greenbaum A.M., Gopalan P.K., Link D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest., 2010, vol. 120, iss. 7, pp. 2423-2431. doi: 10.1172/JCI41649
  35. Eckert J.W., Abramson S.L., Starke J., Brandt M.L. The surgical implications of chronic granulomatous disease. Am. J. Surg, 1995, vol. 169, iss. 3, pp. 320-323. doi: 10.1016/S0002-9610(99)80167-6
  36. Ella K., Csepanyi-Komi R., Kaldi K. Circadian regulation of human peripheral neutrophils. Brain Behav. Immun., 2016, vol. 57, pp. 209-221. doi: 10.1016/j.bbi.2016.04.016
  37. Ella K., Mocsai A., Kaldi K. Circadian regulation of neutrophils: control by a cell-autonomous clock or systemic factors? Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, special iss.: Neutrophils: e12965. doi: 10.1111/eci.12965
  38. Ellis S., Lin E.J., Tartar D. Immunology of wound healing. Curr. Dermatol. Rep., 2018, vol. 7, iss. 4, pp. 350—358. doi: 10.1007/s13671-018-0234-9
  39. Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood, 1984, vol. 64, iss. 5, pp. 1028-1035.
  40. Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J., 1989, vol. 56, iss. 1, pp. 151-160. doi: 10.1016/S0006-3495(89)82660-8
  41. Fadini G.P., Menegazzo L., Rigato M., Scattolini V., Poncina N., Bruttocao A., Ciciliot S., Mammano F., Ciubotaru C.D., Brocco E., Marescotti M.C., Cappellari R., Arrigoni G., Millioni R., Vigili de Kreutzenberg S., Albiero M., Avogaro A. NETosis delays diabetic wound healing in mice and humans. Diabetes, 2016, vol. 65, iss. 4,pp. 1061-1071. doi: 10.2337/db15-0863
  42. Fadok V.A., Bratton D.L., Konowal A., Freed P.W., Westcott J.Y., Henson P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest., 1998, vol. 101, iss. 4, pp. 890-898. doi: 10.1172/jci1112
  43. Fraser J.A., Kemp S., Young L., Ross M., Prach M., Hutchison G.R., Malone E. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci. Rep., 2018, vol. 8: 7506. doi: 10.1038/s41598-018-25854-2
  44. Gabriele S., Benoliel A.M., Bongrand P., Theodoly O. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys. J., 2009, vol. 96, iss. 10,pp. 4308-4318. doi: 10.1016/j.bpj.2009.02.037
  45. Garley M., Jablonska E. Heterogeneity among neutrophils. Arch. Immunol. Ther. Exp., 2018, vol. 66, iss. 1, pp. 21-30. doi: 10.1007/s00005-017-0476-4
  46. Gebb S.A., Graham J.A., Hanger C.C., Godbey P.S., Capen R.L., Doerschuk C.M., Wagner W.W. Jr. Sites of leukocyte sequestration in the pulmonary microcirculation. J. Appl. Physiol., 1995, vol. 79, iss. 2, pp. 493-497. doi: 10.1152/jappl.1995.79.2.493
  47. Gillitzer R., Goebeler M. Chemokines in cutaneous wound healing. J. Leukoc. Biol., 2001, vol. 69, iss. 4,pp. 513-521. doi: 10.1189/jib. 69.4.513
  48. Hajishengallis E., Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J. Dent. Res., 2014, vol. 93, iss. 3, pp. 231-237. doi: 10.1177/0022034513507956
  49. Hinz B., Mastrangelo D., Iselin C.E., Chaponnier C., Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol., 2001, vol. 159, iss. 3, pp. 1009-1020. doi: 10.1016/S0002-9440(10)61776-2
  50. Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J. Oral Microbiol., 2014, vol. 6:26102. doi: 10.3402/jom.v6.26102
  51. Holm A., Vikstrom E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front. Plant Sci,, 2014, vol. 5, article 309. doi: 10.3389%2Ffpls.2014.00309
  52. Hong C.W. Current understanding in neutrophil differentiation and heterogeneity. Immune Netw., 2017, vol. 17, iss. 5, pp. 298306. doi: 10.4110/in.2017.17.5.298
  53. Huang Y., Doerschuk C.M., Kamm R.D. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol., 2001, vol. 90, iss. 2, pp. 545-564. doi: 10.1152/jappl.2001.90.2.545
  54. Irie Y., Parsek M.R. Quorum sensing and microbial biofilms. Cur. Top. Microbiol. Immunol., 2008, vol. 322, pp. 67-84. doi: 10.1007/978-3-540-75418-3 4
  55. James G.A., Swogger E., Wolcott R., Pulcini Ed., Secor P., Sestrich J., Costerton J.W., Stewart P.S. Biofilms in chronic wounds. Wound Repair Regen., 2008, vol. 16, iss. 1, pp. 37-44. doi: 10.1111/j.1524-475X.2007.00321.x
  56. Johnson T.R., Gomez B.I., McIntyre M.K., Dubick M.A., Christy R.J., Nicholson S.E., Burmeister D.M. The cutaneous mi-crobiome and wounds: new molecular targets to promote wound healing. Int. J. Mol. Sci., 2018, vol. 19, iss. 9:2699. doi: 10.3390/ijms19092699
  57. Karlsson T., Musse F., Magnusson K.E., Vikstrom E. N-acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J. Leukoc. Biol., 2012, vol. 91, iss. 1, pp. 15-26. doi: 10.1189/jlb.0111034
  58. Khanna S., Biswas S., Shang Y., Collard E., Azad A., Kauh C., Bhasker V., Gordillo G.M., Sen C.K., Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One, 2010, vol. 5, iss. 3: e9539. doi: 10.1371/journal.pone.0009539
  59. Kohler A., De Filippo K., Hasenberg M., van den Brandt C., Nye E., Hosking M.P., Lane T.E., Mann L., Ransohoff R.M., Hauser A.E., Winter O., Schraven B., Geiger H., Hogg N., Gunzer M. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of CXCR2 ligands. Blood, 2011, vol. 117, iss. 16, pp. 4349-4357. doi: 10.1182/blood-2010-09-308387
  60. Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, vol. 13, pp. 159-175. doi: 10.1038/nri3399
  61. Kovtun A., Messerer D.A.C., Scharffetter-Kochanek K., Huber-Lang M., Ignatius A. Neutrophils in tissue trauma of the skin, bone, and lung: two sides of the same coin. J. Immunol. Res., 2018, vol. 2018: 8173983. doi: 10.1155/2018/8173983
  62. Kreisel D., Nava R.G., Li W., Zinselmeyer B.H., Wang B., Lai J., Pless R., Gelman A.E., Krupnick A.S., Miller M.J. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. PNAS, 2010, vol. 107, no. 42, pp. 18073-18078. doi: 10.1073/pnas.1008737107
  63. Kruger P., Saffarzadeh M., Weber A.N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog, 2015, vol. 11, iss. 3: e1004651. doi: 10.1371/journal.ppat.1004651
  64. Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res., 2018, vol. 371, iss. 3, pp. 399-406. doi: 10.1053/j.gastro.2015.10.027
  65. Kume A., Dinauer M.C. Gene therapy for chronic granulomatous disease. J. Lab. Clin. Med., 2000, vol. 135, iss. 2, pp. 122-128. doi: 10.1067/mlc.2000.104458
  66. Lahoz-Beneytez J., Elemans M., Zhang Y., Ahmed R., Salam A., Block M., Niederalt C., Asquith B., Macallan D. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood, 2016, vol. 127, iss. 26, pp. 3431-3438. doi: 10.1182/blood-2016-03-700336
  67. Landen N.X., Li D., Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci., 2016, vol. 73, iss. 20,pp. 3861-3885. doi: 10.1007/s00018-016-2268-0
  68. Larouche J., Sheoran S., Maruyama K., Martino M.M. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care, 2018, vol. 7, no. 7, pp. 209-231. doi: 10.1089/wound.2017.0761
  69. Lee J.S., Donahoe M.P. Hematologic abnormalities and acute lung syndromes. Springer International Publishing Switzerland, 2017. 265p. doi: 10.1007/978-3-319-41912-1
  70. Lekstrom-Himes J.A., Gallin J.I. Immunodeficiency diseases caused by defects in phagocytes. N. Engl. J. Med., 2000, vol. 343, iss. 23, pp. 1703-1714. doi: 10.1056/NEJM200012073432307
  71. Li L., Zhang Y., Qiao J., Yang J.J., Liu Z.R. Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis. J. Biol. Chem., 2014, vol. 289, no. 37, pp. 25812-25821. doi: 10.1074/jbc.M114.576934
  72. Looney M.R., Thornton E.E., Sen D., Lamm W.J., Glenny R.W., Krummel M.F. Stabilized imaging of immune surveillance in the mouse lung. Nat. Methods., 2011, vol. 8, iss. 1, pp. 91-96. doi: 10.1038/nmeth.1543
  73. Luo B., Wang J., Liu Z., Shen Z., Shi R., Liu Y.Q., Liu Y., Jiang M., Wu Y., Zhang Z. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat. Commun., 2016, vol. 7:12177. doi: 10.1038/ncomms12177
  74. Manda A., Pruchniak M.P., Arazna M., Demkow U.A. Neutrophil extracellular traps in physiology and pathology. Cent. Eur. J. Immunol., 2014, vol. 39, iss. 1, pp. 116-121. doi: 10.5114/ceji.2014.42136
  75. Mann E.R., Smith K.M., Bernardo D., Al-Hassi H.O., Knight S.C., Hart A.L. Review: Skin and the immune system. J. Clin. Exp. Dermatol. Res, 2012, S2: 003. doi: 10.4172/2155-9554.S2-003
  76. McDaniel J.C., Roy S., Wilgus T.A. Neutrophil activity in chronic venous leg ulcers — a target for therapy? Wound Repair Regen., 2013, vol. 21, iss. 3, pp. 339-351. doi: 10.1111/wrr.12036
  77. Mercier F.E., Ragu C., Scadden D.T. The bone marrow at the crossroads ofblood and immunity. Nat. Rev. Immunol., 2011, vol. 12, iss. 1, pp. 49- 60. doi: 10.1038/nri3132
  78. Meyle E., Stroh P., Gunther F., Hoppy-Tichy T., Wagner C., Hansch G.M. Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif Organs., 2010, vol. 33, iss. 9, pp. 608-620. doi: 10.1177/039139881003300906
  79. Midgley A.C., Rogers M., Hallett M.B., Clayton A., Bowen T., Phillips A.O., Steadman R. Transforming growth factor-be-ta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J. Biol. Chem., 2013, vol. 288, no. 21, pp. 14824-14838. doi: 10.1074/jbc.M113.451336
  80. Moir E., Booth N.A., Bennett B., Robbie L.A. Polymorphonuclear leucocytes mediate endogenous thrombus lysis via a u-PA-dependent mechanism. Br. J. Haematol., 2001, vol. 113, iss. 1, pp. 72-80. doi: 10.1046/j.1365-2141.2001.02696.x
  81. Moor A.N., Vachon D.J., Gould L.J. Proteolytic activity in wound fluids and tiss. derived from chronic venous leg ulcers. Wound Repair Regen, 2009, vol. 17, iss. 6, pp. 832-839. doi: 10.1111/j.1524-475X.2009.00547.x
  82. Mustoe T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg, 2004, vol. 187, iss. 5, suppl. 1, pp. S65-S70. doi: 10.1016/S0002-9610(03)00306-4
  83. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol., 2006, vol. 6, iss. 3, pp. 173-182. doi: 10.1038/nri1785
  84. Nestle F.O., Di Meglio P., Qin J.Z., Nickoloff B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol, 2009, vol. 9, iss. 10, pp. 679-691. doi: 10.1038/nri2622
  85. Nicolas-Avila J.A., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity, 2017, vol. 46, iss. 1, pp. 15-28. doi: 10.1016/j.immuni.2016.12.012
  86. Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Microbial biofilms and chronic wounds. Microorganisms, 2017, vol. 5, iss. 1: 9, 15 pages. doi: 10.3390/microorganisms5010009
  87. Ortmann W., Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res, 2018, vol. 371, iss. 3, pp. 473-488. doi: 10.1007/s00441-017-2751-4
  88. Patel B.V., Tatham K.C., Wilson M.R., O’Dea K.P., Takata M. In vivo compartmental analysis of leukocytes in mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, vol. 309, iss. 7, pp. L639-L652. doi: 10.1152/ajplung.00140.2015
  89. Perobelli S.M., Galvani R.G., Gon^alves-Silva T., Xavier C.R., Nobrega A., Bonomo A. Plasticity of neutrophils reveals modulatory capacity. Brag. J. Med. Biol. Res, 2015, vol. 48, no. 8, pp. 665-675. doi: 10.1590/1414-431X20154524
  90. Pillay J., den Braber I., Vrisekoop N., Kwast L.M., de Boer R.J., Borghans J.A., Tesselaar K., Koenderman L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, vol. 116, iss. 4,pp. 625-627. doi: 10.1182/blood-2010-01-259028
  91. Qing C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol., 2017, vol. 20, iss. 4, pp. 189-193. doi: 10.1016/j.cjtee.2017.06.001
  92. Rhee S.G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med., 1999, vol. 31, pp. 53-59. doi: 10.1038/emm.1999.9
  93. Ridiandries A., Tan J.T.M., Bursill C.A. The role of chemokines in wound healing. Int. J. Mol. Sci, 2018, vol. 19, iss. 10: 3217. doi: 10.3390/ijms19103217
  94. Robbins P.B., Lin Q., Goodnough J.B., Tian H., Chen X., Khavari P.A. In vivo restoration of laminin 5 beta 3 expression and function in junctional epidermolysis bullosa. PNAS, 2001, vol. 98, iss. 9, pp. 5193-5198. doi: 10.1073/pnas.091484998
  95. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol., 2018, vol. 9:113. doi: 10.3389/fphys.2018.00113
  96. Rossaint J., Zarbock A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J. Innate Immun., 2013, vol. 5, no. 4, pp. 348-357. doi: 10.1159/000345943
  97. Roy S., Khanna S., Nallu K., Hunt T.K., Sen C.K. Dermal wound healing is subject to redox control. Mol. Ther, 2006, vol. 13, iss. 1, pp. 211-220. doi: 10.1016/j.ymthe.2005.07.684
  98. Scapini P., Cassatella M.A. Social networking of human neutrophils within the immune system. Blood, 2014, vol. 124, iss. 5, pp. 710-719. doi: 10.1182/blood-2014-03-453217
  99. Sen C.K. The general case for redox control of wound repair. Wound Repair Regen., 2003, vol. 11, iss. 6, pp. 431-438. doi: 10.1046/j.1524-475X.2003.11607.x
  100. Sen C.K. Wound healing essentials: let there be oxygen. Wound Repair Regen., 2009, vol. 17, iss. 1, pp. 1-18. doi: 10.1111/j.1524-475X.2008.00436.x
  101. Sen C.K., Roy S. Redox signals in wound healing. Biochim. Biophys. Acta Gen. Subj., 2008, vol. 1780, iss. 11, pp. 1348-1361. doi: 10.1016/j.bbagen.2008.01.006
  102. Serhan C.N., Chiang N., Van Dyke T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol, 2008, vol. 8, iss. 5, pp. 349-361. doi: 10.1038/nri2294
  103. Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, vol. 127, iss. 18, pp. 2173-81. doi: 10.1182/blood-2016-01-688887
  104. Sorensen O.E., Cowland J.B., Theilgaard-Monch K., Liu L., Ganz T., Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol., 2003, vol. 170, iss. 11, pp. 5583-5589. doi: 10.4049/jimmunol.170.11.5583
  105. Stark M.A., Huo Y., Burcin T.L., Morris M.A., Olson T.S., Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, vol. 22, iss. 3, pp. 285-294. doi: 10.1016/j.immuni.2005.01.011
  106. Summers C., Rankin S.M., Condliffe A.M., Singh N., Peters A.M., Chilvers E.R. Neutrophil kinetics in health and disease. Trends Immunol, 2010, vol. 31, iss. 8, pp. 318-324. doi: 10.1016/j.it.2010.05.006
  107. Summers C., Singh N.R., White J.F., Mackenzie I.M., Johnston A., Solanki C., Balan K.K., Peters A.M., Chilvers E.R. Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax, 2014, vol. 69, iss. 7, pp. 623-629. doi: 10.1136/thoraxjnl-2013-204742
  108. Tak T., Tesselaar K., Pillay J., Borghans J.A., Koenderman L. What’s your age again? Determination of human neutrophil halflives revisited. J. Leukoc. Biol., 2013, vol. 94, iss. 4, pp. 595- 601. doi: 10.1189/jlb.1112571
  109. Tamassia N., Bianchetto-Aguilera F., Arruda-Silva F., Gardiman E., Gasperini S., Calzetti F., Cassatella M.A. Cytokine production by human neutrophils: revisiting the “dark side of the moon”. Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, Special Issue: Neutrophils: e12952. doi: 10.1111/eci.12952
  110. Theilgaard-Monch K., Knudsen S., Follin P., Borregaard N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J. Immunol., 2004, vol. 172, iss. 12, pp. 7684-7693. doi: 10.4049/jimmu-nol.172.12.7684
  111. Thomson C.H. Biofilms: Do they affect wound healing? Int. Wound J., 2011, vol. 8, iss. 1, pp. 63-67. doi: 10.1111/j.1742-481X.2010.00749.x
  112. Thornton R.B., Wiertsema S.P., Kirkham L.A., Rigby P.J., Vijayasekaran S., Coates H.L., Richmond P.C. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media — a potential treatment target. PLoS One, 2013, vol. 8, iss. 2: e53837. doi: 10.1371/journal.pone.0053837
  113. Uhl B., Vadlau Y., Zuchtriegel G., Nekolla K., Sharaf K., Gaertner F., Massberg S., Krombach F., Reichel C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood, 2016, vol. 128, iss. 19, pp. 2327-2337. doi: 10.1182/blood-2016-05-718999
  114. Von Vietinghoff S., Ley K. Homeostatic regulation of blood neutrophil counts. J. Immunol., 2008, vol. 181, iss. 8, pp. 5183-5188. doi: 10.4049/jimmunol.181.8.5183
  115. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res., 2018, vol. 371, iss. 3, pp. 531-539. doi: 10.1007/s00441-017-2785-7
  116. Wang J., Hossain M., Thanabalasuriar A., Gunzer M., Meininger C., Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science, 2017, vol. 358, iss. 6359, pp. 111-116. doi: 10.1126/science.aam9690
  117. Widgerow A.D. Cellular resolution of inflammation — catabasis. Wound Repair Regen., 2012, vol. 20, iss. 1, pp. 2-7. doi: 10.1111/j.1524-475X.2011.00754.x
  118. Wilgus T.A., Roy S., McDaniel J.C. Neutrophils and wound repair: positive actions and negative reactions. Adv. Wound Care, 2013, vol. 2, no. 7, pp. 379-388. doi: 10.1089/wound.2012.0383
  119. Wilkes M.C., Mitchell H., Penheiter S.G., Dore J.J., Suzuki K., Edens M., Sharma D.K., Pagano R.E., Leof E.B. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res., 2005, vol. 65, iss. 22, pp. 10431-10440. doi: 10.1158/0008-5472.CAN-05-1522
  120. Wu Y.K., Cheng N.C., Cheng C.M. Biofilms in chronic wounds: pathogenesis and diagnosis. Trends Biotechnol., 2019, vol. 37, iss. 5,pp. 505-517. doi: 10.1016/j.tibtech.2018.10.011
  121. Wu Y.S., Chen S.N. Apoptotic cell: linkage of inflammation and wound healing. Front. Pharmacol., 2014, vol. 5:1. doi: 10.3389/fphar.2014.00001
  122. Yager D.R., Kulina R.A., Gilman L.A. Wound fluids: a window into the wound environment? Int. J. Low. Extrem. Wounds., 2007, vol. 6, iss. 4, pp. 262-272. doi: 10.1177/1534734607307035
  123. Yipp B.G., Kim J.H., Lima R., Zbytnuik L.D., Petri B., Swanlund N., Ho M., Szeto V.G., Tak T., Koenderman L., Pickkers P., Tool A.T.J., Kuijpers T.W., van den Berg T.K., Looney M.R., Krummel M.F., Kubes P. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci. Immunol., 2017, vol. 2, iss. 10: eaam8929. doi: 10.1126/sciimmunol.aam8929
  124. Yipp B.G., Kubes P. NETosis: how vital is it? Blood, 2013, vol. 122, iss. 16,pp. 2784-2794. doi: 10.1182/blood-2013-04-457671
  125. Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.E., Scheiermann C., Merad M., Frenette P.S. Neutrophil ageing is regulated by the microbiome. Nature, 2015, vol. 525, iss. 7570, pp. 528—532. doi: 10.1038/nature15367
  126. Zhang Y. Functions of extracellular pyruvate kinase M2 in tissue repair and regeneration. Georgia State University, 2016. 155p.
  127. Zhang Y., Li L., Liu Y., Liu Z.R. PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair Regen., 2016, vol. 24, iss. 2, pp. 328—336. doi: 10.1111/wrr.12411
  128. Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci., 2016, vol. 17, iss. 12: 2085. doi: 10.3390/ijms17122085

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Долгушин И.И., Мезенцева Е.А., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах