Neutrophil granulocytes: participation in homeostatic and reparative processes. Part I
- Authors: Dolgushin I.I.1, Mezentseva E.A.1
-
Affiliations:
- South-Ural State Medical University
- Issue: Vol 10, No 4 (2020)
- Pages: 609-624
- Section: REVIEWS
- Submitted: 26.07.2019
- Accepted: 26.11.2019
- Published: 25.11.2020
- URL: https://iimmun.ru/iimm/article/view/1257
- DOI: https://doi.org/10.15789/2220-7619-NGP-1257
- ID: 1257
Cite item
Full Text
Abstract
After exiting from the bone marrow (BM) into the circulation, mature neutrophil granulocytes undergo a set of sequential phenotypic and physiological changes collectively called “aging” in the absence of inflammation, by constitutively sensing prime signals from commensal microbiota and acquiring higher functional alertness in case of activation upon tissue damage or pathogen invasion. Physiological aging of blood neutrophils and their subsequent return to the BM result in signals modulating size and function of the hematopoietic niche. Circadian physiological infiltration of BM by neutrophils contributes to maintaining baseline level of circulating hematopoietic progenitor cells capable of regeneration and immune surveillance. Apart from the BM, neutrophils actively enter other healthy tissues, probably exerting some effects on their baseline physiologic state. Using lung tissue, it has been shown that neutrophils can “govern” action of gene set regulating cell growth, migration, proliferation, differentiation, and carcinogenesis. Neutrophils participate in destruction of endometrial tissues during desquamation phase as well as subsequent repair and physiological angiogenesis during proliferative phase of the menstrual cycle; promote wall rupture of the preovulatory ovarian follicle and oocyte exit; contribute to degradation and resorption of the corpus luteum in pregnancy failure; play an important physiological role in vascular remodeling in pregnant uterus and developing maternal immune tolerance to semi-allogeneic fetus. Neutrophils actively migrating to the surface of intestinal epithelium during local infection and/or damage stimulate epithelial restitution and recovery of its barrier function. On the other hand, neutrophils recruited into the oral cavity regulate quantitative and qualitative composition of microbial communities in oral biofilms, and ensure healthy state of periodontal structures. Being a major player and regulator in healing of skin wounds at early stage, inflammation, neutrophils not only destroy potential pathogens, but also participate in cleansing wounds from cell debris, produce cytokines, enzymes, and growth factors affecting further stages in repair process. Both apoptosis and NETosis underlying neutrophil death greatly contribute to wound healing. However, dysregulation and imbalance in both apoptosis and NETosis may lead to unfavorable consequences as well as developing chronic non-healing wounds.
About the authors
I. I. Dolgushin
South-Ural State Medical University
Email: alena_mez_75@mail.ru
Chelyabinsk Россия
E. A. Mezentseva
South-Ural State Medical University
Author for correspondence.
Email: alena_mez_75@mail.ru
Elena A. Mezentseva
454092, Russian Federation, Chelyabinsk, Vorovskogo str., 64, Phone: +7 902 892-28-43
РоссияReferences
- Долгушин И.И., Бухарин О.В. Нейтрофилы и гомеостаз. Екатеринбург: УрО РАН, 2001. 288 с.
- Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы // Инфекция и иммунитет. 2019. Т. 9, № 1. С. 9—38. doi: 10.15789/2220-7619-2019-1-9-38 (In Russ.)
- Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. 2015. Т. 36, № 4. С. 257— 265.
- Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 1 // Инфекция и иммунитет. 2017. Т. 7, № 3. C. 219-230. 10.15789/2220-7619-2017-3-219-230 (In Russ.)
- Нестерова И.В., Колесникова Н.В., Чудилова Г.А., Ломтатидзе Л.В., Ковалева С.В., Евглевский А.А., Нгуен Т.З.Л. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. 2018. Т. 8, № 1. C. 7-18. doi: 10.15789/2220-7619-2018-1-7-18 (In Russ.)
- Нефедова Н.А., Харлова О.А., Данилова Н.В., Мальков П.Г., Гайфуллин Н.М. Маркеры ангиогенеза при опухолевом росте // Архив патологии. 2016. Т. 78, № 2. С. 55-63. doi: 10.17116/patol201678255- 62 (In Russ.)
- Хмель И.А., Белик А.С., Зайцева Ю.В., Данилова Н.Н. Quorum sensing и коммуникация бактерий // Вестник Московского университета. Серия 16: Биология. 2008. № 1. С. 28-35.
- Цепколенко А.В. Иммунная система и регенеративный потенциал кожи // Дерматолопя та венеролопя. 2017. № 3 (77). С. 27-37.
- Abdallah F., Mijouin L., Pichon C. Skin immune landscape: inside and outside the organism. MediatorsInflamm, 2017, vol. 2017, Article ID 5095293,17pages. doi: 10.1155/2017/5095293
- Adrover J.M., Nicolas-Avila J.A., Hidalgo A. Aging: a temporal dimension for neutrophils. Trends Immunol., 2016, vol. 37, iss. 5, pp. 334-345. doi: 10.1016/j.it.2016.03.005
- Barker H., Aaltonen M., Pan P., Vahatupa M., Kaipiainen P., May U., Prince S., Uusitalo-Jarvinen H., Waheed A., Pastorekova S., Sly W.S., Parkkila S., Jarvinen T.A. Role of carbonic anhydrases in skin wound healing. Exp. Mol. Med., 2017, vol. 49, iss. 5: e334. doi: 10.1038/emm.2017.60
- Barletta K.E., Cagnina R.E., Wallace K.L., Ramos S.I., Mehrad B., Linden J. Leukocyte compartments in the mouse lung: distinguishing between marginated, interstitial, and alveolar cells in response to injury. J. Immunol. Methods, 2012, vol. 375, iss. 1-2, pp. 100-110. doi: 10.1016/j.jim.2011.09.013
- Bekeschus S., Lackmann J.W., Gumbel D., Napp M., Schmidt A., Wende K. A neutrophil proteomic signature in surgical trauma wounds. Int. J. Mol. Sci., 2018, vol. 19, iss. 3: 761. doi: 10.3390/ijms19030761
- Bekkering S., Torensma R. Another look at the life of a neutrophil. World J. Hematol., 2013, vol. 2, iss. 2, pp. 44-58. doi: 10.5315/wjh.v2.i2.44
- Bennewitz M.F., Watkins S.C., Sundd P. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice. Intravital, 2014, vol. 3, iss. 2: e29748. doi: 10.4161/intv.29748
- Bernardini G., Ribatti D., Spinetti G., Morbidelli L., Ziche M., Santoni A., Capogrossi M.C., Napolitano M. Analysis of the role of chemokines in angiogenesis. J. Immunol. Methods, 2003, vol. 273, iss. 1-2, pp. 83-101. doi: 10.1016/S0022-1759(02)00420-9
- Blasi F., Carmeliet P. uPAR: a versatile signalling orchestrator. Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 932-943. doi: 10.1038/nrm977
- Borregaard N. Neutrophils, from marrow to microbes. Immunity, 2010, vol. 33, iss. 5, pp. 657-670. doi: 10.1016/j.immu-ni.2010.11.011
- Bos J.D., Kapsenberg M.L. The skin immune system its cellular constituents and their interactions. Immunol. Today, 1986, vol. 7, iss. 7-8, pp. 235-240. doi: 10.1016/0167-5699(86)90111-8
- Bratton D.L., Henson P.M. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol., 2011, vol. 32, iss. 8, pp. 350-357. doi: 10.1016/j.it.2011.04.009
- Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, iss. 5663, pp. 1532-1535. doi: 10.1126/science.1092385
- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, vol. 414, iss. 6865, pp. 813-820. doi: 10.1038/414813a
- Casanova-Acebes M., Nicolas-Avila J.A., Li J.L., Garcia-Silva S., Balachander A., Rubio-Ponce A., Weiss L.A., Adrover J.M., Burrows K., A-Gonzalez N., Ballesteros I., Devi S., Quintana J.A., Crainiciuc G., Leiva M., Gunzer M., Weber C., Nagasawa T., Soehnlein O., Merad M., Mortha A., Ng L.G., Peinado H., Hidalgo A. Neutrophils instruct homeostatic and pathological states in naive tiss. J. Exp. Med, 2018, vol. 215, no. 11, pp. 2778-2795. doi: 10.1084/jem.20181468
- Casanova-Acebes M., Pitaval C., Weiss L.A., Nombela-Arrieta C., Chevre R., A-Gonzalez N., Kunisaki Y., Zhang D., van Rooijen N., Silberstein L.E., Weber C., Nagasawa T., Frenette P.S., Castrillo A., Hidalgo A. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, vol. 153, iss. 5, pp. 1025-1035. doi: 10.1016/j.cell.2013.04.040
- Christoffersson G., Phillipson M. The neutrophil: one cell on many missions or many cells with different agendas? Cell Tissue Res, 2018, vol. 371, iss. 3, pp. 415-423. doi: 10.1007/s00441-017-2780-z
- Darby I.A., Bisucci T., Hewitson T.D., MacLellan D.G. Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. Int. J. Biochem. Cell Biol., 1997, vol. 29, iss. 1, pp. 191-200. doi: 10.1016/S1357-2725(96)00131-8
- De Filippo K., Rankin S.M. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, special iss.: Neutrophils: e12949. doi: 10.1111/eci.12949
- Delgado-Rizo V., Martfnez-Guzman M.A., Iniguez-Gutierrez L., Garcia-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front. Immunol., 2017, vol. 8: 81. doi: 10.3389/fimmu.2017.00081
- Devi S., Wang Y., Chew W.K., Lima R., A-Gonzalez N., Mattar C.N., Chong S.Z., Schlitzer A., Bakocevic N., Chew S., Keeble J.L., Goh C.C., Li J.L., Evrard M., Malleret B., Larbi A., Renia L., Haniffa M., Tan S.M., Chan J.K., Balabanian K., Nagasawa T., Bachelerie F., Hidalgo A., Ginhoux F., Kubes P., Ng L.G. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med., 2013, vol. 210, no. 11, pp. 2321-2336. doi: 10.1084/jem.20130056
- Diegelmann R.F. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen., 2003, vol. 11, iss. 6, pp. 490495. doi: 10.1046/j.1524-475X.2003.11617.x
- Doerschuk C.M. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation, 2001, vol. 8, iss. 2, pp. 71-88. doi: 10.1111/j.1549- 8719.2001. tb00159.x
- Doerschuk C.M., Beyers N., Coxson H.O., Wiggs B., Hogg J.C. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J. Appl. Physiol., 1993, vol. 74, iss. 6,pp. 3040-3045. doi: 10.1152/jappl.1993.74.6.3040
- Eash K.J., Means J.M., White D.W., Link D.C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, vol. 113, iss. 19,pp. 4711-4719. doi: 10.1182/blood-2008-09-177287
- Eash K.J., Greenbaum A.M., Gopalan P.K., Link D.C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest., 2010, vol. 120, iss. 7, pp. 2423-2431. doi: 10.1172/JCI41649
- Eckert J.W., Abramson S.L., Starke J., Brandt M.L. The surgical implications of chronic granulomatous disease. Am. J. Surg, 1995, vol. 169, iss. 3, pp. 320-323. doi: 10.1016/S0002-9610(99)80167-6
- Ella K., Csepanyi-Komi R., Kaldi K. Circadian regulation of human peripheral neutrophils. Brain Behav. Immun., 2016, vol. 57, pp. 209-221. doi: 10.1016/j.bbi.2016.04.016
- Ella K., Mocsai A., Kaldi K. Circadian regulation of neutrophils: control by a cell-autonomous clock or systemic factors? Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, special iss.: Neutrophils: e12965. doi: 10.1111/eci.12965
- Ellis S., Lin E.J., Tartar D. Immunology of wound healing. Curr. Dermatol. Rep., 2018, vol. 7, iss. 4, pp. 350—358. doi: 10.1007/s13671-018-0234-9
- Evans E., Kukan B. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood, 1984, vol. 64, iss. 5, pp. 1028-1035.
- Evans E., Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J., 1989, vol. 56, iss. 1, pp. 151-160. doi: 10.1016/S0006-3495(89)82660-8
- Fadini G.P., Menegazzo L., Rigato M., Scattolini V., Poncina N., Bruttocao A., Ciciliot S., Mammano F., Ciubotaru C.D., Brocco E., Marescotti M.C., Cappellari R., Arrigoni G., Millioni R., Vigili de Kreutzenberg S., Albiero M., Avogaro A. NETosis delays diabetic wound healing in mice and humans. Diabetes, 2016, vol. 65, iss. 4,pp. 1061-1071. doi: 10.2337/db15-0863
- Fadok V.A., Bratton D.L., Konowal A., Freed P.W., Westcott J.Y., Henson P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest., 1998, vol. 101, iss. 4, pp. 890-898. doi: 10.1172/jci1112
- Fraser J.A., Kemp S., Young L., Ross M., Prach M., Hutchison G.R., Malone E. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci. Rep., 2018, vol. 8: 7506. doi: 10.1038/s41598-018-25854-2
- Gabriele S., Benoliel A.M., Bongrand P., Theodoly O. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin II activity in capillary leukocyte trafficking. Biophys. J., 2009, vol. 96, iss. 10,pp. 4308-4318. doi: 10.1016/j.bpj.2009.02.037
- Garley M., Jablonska E. Heterogeneity among neutrophils. Arch. Immunol. Ther. Exp., 2018, vol. 66, iss. 1, pp. 21-30. doi: 10.1007/s00005-017-0476-4
- Gebb S.A., Graham J.A., Hanger C.C., Godbey P.S., Capen R.L., Doerschuk C.M., Wagner W.W. Jr. Sites of leukocyte sequestration in the pulmonary microcirculation. J. Appl. Physiol., 1995, vol. 79, iss. 2, pp. 493-497. doi: 10.1152/jappl.1995.79.2.493
- Gillitzer R., Goebeler M. Chemokines in cutaneous wound healing. J. Leukoc. Biol., 2001, vol. 69, iss. 4,pp. 513-521. doi: 10.1189/jib. 69.4.513
- Hajishengallis E., Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J. Dent. Res., 2014, vol. 93, iss. 3, pp. 231-237. doi: 10.1177/0022034513507956
- Hinz B., Mastrangelo D., Iselin C.E., Chaponnier C., Gabbiani G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol., 2001, vol. 159, iss. 3, pp. 1009-1020. doi: 10.1016/S0002-9440(10)61776-2
- Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J. Oral Microbiol., 2014, vol. 6:26102. doi: 10.3402/jom.v6.26102
- Holm A., Vikstrom E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions. Front. Plant Sci,, 2014, vol. 5, article 309. doi: 10.3389%2Ffpls.2014.00309
- Hong C.W. Current understanding in neutrophil differentiation and heterogeneity. Immune Netw., 2017, vol. 17, iss. 5, pp. 298306. doi: 10.4110/in.2017.17.5.298
- Huang Y., Doerschuk C.M., Kamm R.D. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol., 2001, vol. 90, iss. 2, pp. 545-564. doi: 10.1152/jappl.2001.90.2.545
- Irie Y., Parsek M.R. Quorum sensing and microbial biofilms. Cur. Top. Microbiol. Immunol., 2008, vol. 322, pp. 67-84. doi: 10.1007/978-3-540-75418-3 4
- James G.A., Swogger E., Wolcott R., Pulcini Ed., Secor P., Sestrich J., Costerton J.W., Stewart P.S. Biofilms in chronic wounds. Wound Repair Regen., 2008, vol. 16, iss. 1, pp. 37-44. doi: 10.1111/j.1524-475X.2007.00321.x
- Johnson T.R., Gomez B.I., McIntyre M.K., Dubick M.A., Christy R.J., Nicholson S.E., Burmeister D.M. The cutaneous mi-crobiome and wounds: new molecular targets to promote wound healing. Int. J. Mol. Sci., 2018, vol. 19, iss. 9:2699. doi: 10.3390/ijms19092699
- Karlsson T., Musse F., Magnusson K.E., Vikstrom E. N-acylhomoserine lactones are potent neutrophil chemoattractants that act via calcium mobilization and actin remodeling. J. Leukoc. Biol., 2012, vol. 91, iss. 1, pp. 15-26. doi: 10.1189/jlb.0111034
- Khanna S., Biswas S., Shang Y., Collard E., Azad A., Kauh C., Bhasker V., Gordillo G.M., Sen C.K., Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One, 2010, vol. 5, iss. 3: e9539. doi: 10.1371/journal.pone.0009539
- Kohler A., De Filippo K., Hasenberg M., van den Brandt C., Nye E., Hosking M.P., Lane T.E., Mann L., Ransohoff R.M., Hauser A.E., Winter O., Schraven B., Geiger H., Hogg N., Gunzer M. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of CXCR2 ligands. Blood, 2011, vol. 117, iss. 16, pp. 4349-4357. doi: 10.1182/blood-2010-09-308387
- Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, vol. 13, pp. 159-175. doi: 10.1038/nri3399
- Kovtun A., Messerer D.A.C., Scharffetter-Kochanek K., Huber-Lang M., Ignatius A. Neutrophils in tissue trauma of the skin, bone, and lung: two sides of the same coin. J. Immunol. Res., 2018, vol. 2018: 8173983. doi: 10.1155/2018/8173983
- Kreisel D., Nava R.G., Li W., Zinselmeyer B.H., Wang B., Lai J., Pless R., Gelman A.E., Krupnick A.S., Miller M.J. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. PNAS, 2010, vol. 107, no. 42, pp. 18073-18078. doi: 10.1073/pnas.1008737107
- Kruger P., Saffarzadeh M., Weber A.N., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog, 2015, vol. 11, iss. 3: e1004651. doi: 10.1371/journal.ppat.1004651
- Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res., 2018, vol. 371, iss. 3, pp. 399-406. doi: 10.1053/j.gastro.2015.10.027
- Kume A., Dinauer M.C. Gene therapy for chronic granulomatous disease. J. Lab. Clin. Med., 2000, vol. 135, iss. 2, pp. 122-128. doi: 10.1067/mlc.2000.104458
- Lahoz-Beneytez J., Elemans M., Zhang Y., Ahmed R., Salam A., Block M., Niederalt C., Asquith B., Macallan D. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood, 2016, vol. 127, iss. 26, pp. 3431-3438. doi: 10.1182/blood-2016-03-700336
- Landen N.X., Li D., Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci., 2016, vol. 73, iss. 20,pp. 3861-3885. doi: 10.1007/s00018-016-2268-0
- Larouche J., Sheoran S., Maruyama K., Martino M.M. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv. Wound Care, 2018, vol. 7, no. 7, pp. 209-231. doi: 10.1089/wound.2017.0761
- Lee J.S., Donahoe M.P. Hematologic abnormalities and acute lung syndromes. Springer International Publishing Switzerland, 2017. 265p. doi: 10.1007/978-3-319-41912-1
- Lekstrom-Himes J.A., Gallin J.I. Immunodeficiency diseases caused by defects in phagocytes. N. Engl. J. Med., 2000, vol. 343, iss. 23, pp. 1703-1714. doi: 10.1056/NEJM200012073432307
- Li L., Zhang Y., Qiao J., Yang J.J., Liu Z.R. Pyruvate kinase M2 in blood circulation facilitates tumor growth by promoting angiogenesis. J. Biol. Chem., 2014, vol. 289, no. 37, pp. 25812-25821. doi: 10.1074/jbc.M114.576934
- Looney M.R., Thornton E.E., Sen D., Lamm W.J., Glenny R.W., Krummel M.F. Stabilized imaging of immune surveillance in the mouse lung. Nat. Methods., 2011, vol. 8, iss. 1, pp. 91-96. doi: 10.1038/nmeth.1543
- Luo B., Wang J., Liu Z., Shen Z., Shi R., Liu Y.Q., Liu Y., Jiang M., Wu Y., Zhang Z. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat. Commun., 2016, vol. 7:12177. doi: 10.1038/ncomms12177
- Manda A., Pruchniak M.P., Arazna M., Demkow U.A. Neutrophil extracellular traps in physiology and pathology. Cent. Eur. J. Immunol., 2014, vol. 39, iss. 1, pp. 116-121. doi: 10.5114/ceji.2014.42136
- Mann E.R., Smith K.M., Bernardo D., Al-Hassi H.O., Knight S.C., Hart A.L. Review: Skin and the immune system. J. Clin. Exp. Dermatol. Res, 2012, S2: 003. doi: 10.4172/2155-9554.S2-003
- McDaniel J.C., Roy S., Wilgus T.A. Neutrophil activity in chronic venous leg ulcers — a target for therapy? Wound Repair Regen., 2013, vol. 21, iss. 3, pp. 339-351. doi: 10.1111/wrr.12036
- Mercier F.E., Ragu C., Scadden D.T. The bone marrow at the crossroads ofblood and immunity. Nat. Rev. Immunol., 2011, vol. 12, iss. 1, pp. 49- 60. doi: 10.1038/nri3132
- Meyle E., Stroh P., Gunther F., Hoppy-Tichy T., Wagner C., Hansch G.M. Destruction of bacterial biofilms by polymorphonuclear neutrophils: relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif Organs., 2010, vol. 33, iss. 9, pp. 608-620. doi: 10.1177/039139881003300906
- Midgley A.C., Rogers M., Hallett M.B., Clayton A., Bowen T., Phillips A.O., Steadman R. Transforming growth factor-be-ta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J. Biol. Chem., 2013, vol. 288, no. 21, pp. 14824-14838. doi: 10.1074/jbc.M113.451336
- Moir E., Booth N.A., Bennett B., Robbie L.A. Polymorphonuclear leucocytes mediate endogenous thrombus lysis via a u-PA-dependent mechanism. Br. J. Haematol., 2001, vol. 113, iss. 1, pp. 72-80. doi: 10.1046/j.1365-2141.2001.02696.x
- Moor A.N., Vachon D.J., Gould L.J. Proteolytic activity in wound fluids and tiss. derived from chronic venous leg ulcers. Wound Repair Regen, 2009, vol. 17, iss. 6, pp. 832-839. doi: 10.1111/j.1524-475X.2009.00547.x
- Mustoe T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg, 2004, vol. 187, iss. 5, suppl. 1, pp. S65-S70. doi: 10.1016/S0002-9610(03)00306-4
- Nathan C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol., 2006, vol. 6, iss. 3, pp. 173-182. doi: 10.1038/nri1785
- Nestle F.O., Di Meglio P., Qin J.Z., Nickoloff B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol, 2009, vol. 9, iss. 10, pp. 679-691. doi: 10.1038/nri2622
- Nicolas-Avila J.A., Adrover J.M., Hidalgo A. Neutrophils in homeostasis, immunity, and cancer. Immunity, 2017, vol. 46, iss. 1, pp. 15-28. doi: 10.1016/j.immuni.2016.12.012
- Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Microbial biofilms and chronic wounds. Microorganisms, 2017, vol. 5, iss. 1: 9, 15 pages. doi: 10.3390/microorganisms5010009
- Ortmann W., Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res, 2018, vol. 371, iss. 3, pp. 473-488. doi: 10.1007/s00441-017-2751-4
- Patel B.V., Tatham K.C., Wilson M.R., O’Dea K.P., Takata M. In vivo compartmental analysis of leukocytes in mouse lungs. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, vol. 309, iss. 7, pp. L639-L652. doi: 10.1152/ajplung.00140.2015
- Perobelli S.M., Galvani R.G., Gon^alves-Silva T., Xavier C.R., Nobrega A., Bonomo A. Plasticity of neutrophils reveals modulatory capacity. Brag. J. Med. Biol. Res, 2015, vol. 48, no. 8, pp. 665-675. doi: 10.1590/1414-431X20154524
- Pillay J., den Braber I., Vrisekoop N., Kwast L.M., de Boer R.J., Borghans J.A., Tesselaar K., Koenderman L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, vol. 116, iss. 4,pp. 625-627. doi: 10.1182/blood-2010-01-259028
- Qing C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol., 2017, vol. 20, iss. 4, pp. 189-193. doi: 10.1016/j.cjtee.2017.06.001
- Rhee S.G. Redox signaling: hydrogen peroxide as intracellular messenger. Exp. Mol. Med., 1999, vol. 31, pp. 53-59. doi: 10.1038/emm.1999.9
- Ridiandries A., Tan J.T.M., Bursill C.A. The role of chemokines in wound healing. Int. J. Mol. Sci, 2018, vol. 19, iss. 10: 3217. doi: 10.3390/ijms19103217
- Robbins P.B., Lin Q., Goodnough J.B., Tian H., Chen X., Khavari P.A. In vivo restoration of laminin 5 beta 3 expression and function in junctional epidermolysis bullosa. PNAS, 2001, vol. 98, iss. 9, pp. 5193-5198. doi: 10.1073/pnas.091484998
- Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol., 2018, vol. 9:113. doi: 10.3389/fphys.2018.00113
- Rossaint J., Zarbock A. Tissue-specific neutrophil recruitment into the lung, liver, and kidney. J. Innate Immun., 2013, vol. 5, no. 4, pp. 348-357. doi: 10.1159/000345943
- Roy S., Khanna S., Nallu K., Hunt T.K., Sen C.K. Dermal wound healing is subject to redox control. Mol. Ther, 2006, vol. 13, iss. 1, pp. 211-220. doi: 10.1016/j.ymthe.2005.07.684
- Scapini P., Cassatella M.A. Social networking of human neutrophils within the immune system. Blood, 2014, vol. 124, iss. 5, pp. 710-719. doi: 10.1182/blood-2014-03-453217
- Sen C.K. The general case for redox control of wound repair. Wound Repair Regen., 2003, vol. 11, iss. 6, pp. 431-438. doi: 10.1046/j.1524-475X.2003.11607.x
- Sen C.K. Wound healing essentials: let there be oxygen. Wound Repair Regen., 2009, vol. 17, iss. 1, pp. 1-18. doi: 10.1111/j.1524-475X.2008.00436.x
- Sen C.K., Roy S. Redox signals in wound healing. Biochim. Biophys. Acta Gen. Subj., 2008, vol. 1780, iss. 11, pp. 1348-1361. doi: 10.1016/j.bbagen.2008.01.006
- Serhan C.N., Chiang N., Van Dyke T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol, 2008, vol. 8, iss. 5, pp. 349-361. doi: 10.1038/nri2294
- Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, vol. 127, iss. 18, pp. 2173-81. doi: 10.1182/blood-2016-01-688887
- Sorensen O.E., Cowland J.B., Theilgaard-Monch K., Liu L., Ganz T., Borregaard N. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol., 2003, vol. 170, iss. 11, pp. 5583-5589. doi: 10.4049/jimmunol.170.11.5583
- Stark M.A., Huo Y., Burcin T.L., Morris M.A., Olson T.S., Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, vol. 22, iss. 3, pp. 285-294. doi: 10.1016/j.immuni.2005.01.011
- Summers C., Rankin S.M., Condliffe A.M., Singh N., Peters A.M., Chilvers E.R. Neutrophil kinetics in health and disease. Trends Immunol, 2010, vol. 31, iss. 8, pp. 318-324. doi: 10.1016/j.it.2010.05.006
- Summers C., Singh N.R., White J.F., Mackenzie I.M., Johnston A., Solanki C., Balan K.K., Peters A.M., Chilvers E.R. Pulmonary retention of primed neutrophils: a novel protective host response, which is impaired in the acute respiratory distress syndrome. Thorax, 2014, vol. 69, iss. 7, pp. 623-629. doi: 10.1136/thoraxjnl-2013-204742
- Tak T., Tesselaar K., Pillay J., Borghans J.A., Koenderman L. What’s your age again? Determination of human neutrophil halflives revisited. J. Leukoc. Biol., 2013, vol. 94, iss. 4, pp. 595- 601. doi: 10.1189/jlb.1112571
- Tamassia N., Bianchetto-Aguilera F., Arruda-Silva F., Gardiman E., Gasperini S., Calzetti F., Cassatella M.A. Cytokine production by human neutrophils: revisiting the “dark side of the moon”. Eur. J. Clin. Invest., 2018, vol. 48, iss. 52, Special Issue: Neutrophils: e12952. doi: 10.1111/eci.12952
- Theilgaard-Monch K., Knudsen S., Follin P., Borregaard N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J. Immunol., 2004, vol. 172, iss. 12, pp. 7684-7693. doi: 10.4049/jimmu-nol.172.12.7684
- Thomson C.H. Biofilms: Do they affect wound healing? Int. Wound J., 2011, vol. 8, iss. 1, pp. 63-67. doi: 10.1111/j.1742-481X.2010.00749.x
- Thornton R.B., Wiertsema S.P., Kirkham L.A., Rigby P.J., Vijayasekaran S., Coates H.L., Richmond P.C. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media — a potential treatment target. PLoS One, 2013, vol. 8, iss. 2: e53837. doi: 10.1371/journal.pone.0053837
- Uhl B., Vadlau Y., Zuchtriegel G., Nekolla K., Sharaf K., Gaertner F., Massberg S., Krombach F., Reichel C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood, 2016, vol. 128, iss. 19, pp. 2327-2337. doi: 10.1182/blood-2016-05-718999
- Von Vietinghoff S., Ley K. Homeostatic regulation of blood neutrophil counts. J. Immunol., 2008, vol. 181, iss. 8, pp. 5183-5188. doi: 10.4049/jimmunol.181.8.5183
- Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res., 2018, vol. 371, iss. 3, pp. 531-539. doi: 10.1007/s00441-017-2785-7
- Wang J., Hossain M., Thanabalasuriar A., Gunzer M., Meininger C., Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science, 2017, vol. 358, iss. 6359, pp. 111-116. doi: 10.1126/science.aam9690
- Widgerow A.D. Cellular resolution of inflammation — catabasis. Wound Repair Regen., 2012, vol. 20, iss. 1, pp. 2-7. doi: 10.1111/j.1524-475X.2011.00754.x
- Wilgus T.A., Roy S., McDaniel J.C. Neutrophils and wound repair: positive actions and negative reactions. Adv. Wound Care, 2013, vol. 2, no. 7, pp. 379-388. doi: 10.1089/wound.2012.0383
- Wilkes M.C., Mitchell H., Penheiter S.G., Dore J.J., Suzuki K., Edens M., Sharma D.K., Pagano R.E., Leof E.B. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res., 2005, vol. 65, iss. 22, pp. 10431-10440. doi: 10.1158/0008-5472.CAN-05-1522
- Wu Y.K., Cheng N.C., Cheng C.M. Biofilms in chronic wounds: pathogenesis and diagnosis. Trends Biotechnol., 2019, vol. 37, iss. 5,pp. 505-517. doi: 10.1016/j.tibtech.2018.10.011
- Wu Y.S., Chen S.N. Apoptotic cell: linkage of inflammation and wound healing. Front. Pharmacol., 2014, vol. 5:1. doi: 10.3389/fphar.2014.00001
- Yager D.R., Kulina R.A., Gilman L.A. Wound fluids: a window into the wound environment? Int. J. Low. Extrem. Wounds., 2007, vol. 6, iss. 4, pp. 262-272. doi: 10.1177/1534734607307035
- Yipp B.G., Kim J.H., Lima R., Zbytnuik L.D., Petri B., Swanlund N., Ho M., Szeto V.G., Tak T., Koenderman L., Pickkers P., Tool A.T.J., Kuijpers T.W., van den Berg T.K., Looney M.R., Krummel M.F., Kubes P. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci. Immunol., 2017, vol. 2, iss. 10: eaam8929. doi: 10.1126/sciimmunol.aam8929
- Yipp B.G., Kubes P. NETosis: how vital is it? Blood, 2013, vol. 122, iss. 16,pp. 2784-2794. doi: 10.1182/blood-2013-04-457671
- Zhang D., Chen G., Manwani D., Mortha A., Xu C., Faith J.J., Burk R.D., Kunisaki Y., Jang J.E., Scheiermann C., Merad M., Frenette P.S. Neutrophil ageing is regulated by the microbiome. Nature, 2015, vol. 525, iss. 7570, pp. 528—532. doi: 10.1038/nature15367
- Zhang Y. Functions of extracellular pyruvate kinase M2 in tissue repair and regeneration. Georgia State University, 2016. 155p.
- Zhang Y., Li L., Liu Y., Liu Z.R. PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair Regen., 2016, vol. 24, iss. 2, pp. 328—336. doi: 10.1111/wrr.12411
- Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci., 2016, vol. 17, iss. 12: 2085. doi: 10.3390/ijms17122085