REGULATION OF IMMUNE RESPONSE AGAINST MYCOBACTERIUM TUBERCULOSIS BY THE POPULATION OF REGULATORY DENDRITIC CELLS
- Authors: Rubakova E.I.1, Kapina M.A.1, Logunova N.N.1, Majorov K.B.1, Apt A.S.1
-
Affiliations:
- Central Research Institute of Tuberculosis
- Issue: Vol 8, No 2 (2018)
- Pages: 169-174
- Section: ORIGINAL ARTICLES
- Submitted: 10.09.2018
- Accepted: 10.09.2018
- Published: 10.09.2018
- URL: https://iimmun.ru/iimm/article/view/735
- DOI: https://doi.org/10.15789/2220-7619-2018-2-169-174
- ID: 735
Cite item
Full Text
Abstract
On the background of a high level of genetic susceptibility to tuberculosis infection (TB), granulomatous reactions in the lung tissue fail to effectively isolate infection foci and rather result in diffuse pathology, confluence of granulomata and formation of necrotic zones. Uncontrolled inflammation severely affect breathing function of the lung. Thus, effective disease control requires a good balance between protective and pathogenic immune responses. Immature regulatory dendritic cells (DCreg) and regulatory T lymphocytes (Treg) represent a pool of important cellular regulators of inflammation. Earlier we have demonstrated that stromal lung cells support development of CD11b+CD11clowCD103– DCreg from their bone marrowderived precursors in in vitro cultures. In addition, significantly larger population size and more rapid development of the lung CD4+Foxp3+ Treg cells characterize TB- resistant B6 mice compare to their TB-susceptible I/St counterparts. Here, we report that adoptive transfer of DCreg cells into TB-infected I/St mice is capable to enlarge the population of Treg cells in the lungs. This, in turn, attenuates lung pathology, decreases mycobacterial multiplication and diminishes lung infiltration with neutrophils, i.e., selectively restricts the population of cell largely responsible for TB pathogenesis. The key difference in lung pathology between DCreg recipients and control animals was the lack of tissue-destructive foci and necrotic zones in the former group. Meanwhile, the groups of mice did not differ in production of regulatory (IL-10 and TGF-β) and key inflammatory (IFNγ and IL-6) cytokines by lung cells. The latter result suggests that contact rather than secretory mechanisms underlie moderate attenuation of the TB process in the lungs of mice with an elevated lung Treg level, given that plethora of such mechanisms were described for Treg functioning. Although therapeutic effects were relatively weak, our results indicate that cell therapy approaches are applicable to regulation of lung tissue inflammation during TB course.
Keywords
About the authors
E. I. Rubakova
Central Research Institute of Tuberculosis
Email: fake@neicon.ru
PhD (Biology), Senior Researcher, Laboratory of Immunogenetics, Central Research Institute of Tuberculosis, Moscow, Russian Federation
РоссияM. A. Kapina
Central Research Institute of Tuberculosis
Email: fake@neicon.ru
PhD (Biology), Senior Researcher, Laboratory of Immunogenetics, Central Research Institute of Tuberculosis, Moscow, Russian Federation
РоссияN. N. Logunova
Central Research Institute of Tuberculosis
Email: fake@neicon.ru
PhD (Medicine), Senior Researcher, Laboratory of Immunogenetics, Central Research Institute of Tuberculosis, Moscow, Russian Federation
РоссияK. B. Majorov
Central Research Institute of Tuberculosis
Email: fake@neicon.ru
PhD (Biology), Senior Researcher, Laboratory of Immunogenetics, Central Research Institute of Tuberculosis, Moscow, Russian Federation
РоссияA. S. Apt
Central Research Institute of Tuberculosis
Author for correspondence.
Email: alexapt0151@gmail.com
PhD, MD (Biology), Professor, Head of the Laboratory of Immunogenetics, Central Research Institute of Tuberculosis, Moscow, Russian Federation
107564, Russian Federation, Moscow, Yauzskaya alley, 2
Phone: +7 (812) 785-90-72 (office)
РоссияReferences
- Allie N., Grivennikov S.I., Keeton R., Hsu N.J., Bourigault M.L., Court N., Fremond C., Yeremeev V., Shebzukhov Y., Ryffel B., Nedospasov S.A., Quesniaux V.F.J., Jacobs M. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci. Rep., 2013, vol. 3, no. 1809, 14 p. doi: 10.1038/srep01809
- Cooper A.M. T cells in mycobacterial infection and disease. Curr. Opin. Immunol., 2009, vol. 21, iss. 4, pp. 378–384. doi: 10.1016/j.coi.2009.06.004
- Dorhoi A., Reece S.T., Kaufmann S.H.E. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol. Rev., 2011, vol. 240, iss. 1, pp. 235–251. doi: 10.1111/j.1600-065X.2010.00994.x
- Eruslanov E.B., Lyadova I.V., Kondratieva T.K., Majorov K.B., Scheglov I.V., Orlova M.O., Apt A.S. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect. Immun., 2005, vol. 73, no. 3, pp. 1744–1753. doi: 10.1128/IAI.73.3.1744-1753.2005
- Eruslanov E.B., Majorov K.B., Orlova M.O., Mischenko V.V., Kondratieva T.K., Apt A.S., Lyadova I.V. Lung cell responses to M. tuberculosis in genetically susceptible and resistant mice following intratracheal challenge. Clin. Exp. Immunol., 2004, vol. 135, no. 1, pp. 19–28.
- Flynn J.L., Chan J., Triebold K.J., Dalton D.K., Stewart T.A., Bloom B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med., 1993, vol. 176, no. 6, pp. 2249–2254.
- Kapina M.A., Rubakova E.I., Majorov K.B., Logunova N.N., Apt A.S. Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis. PLoS One, 2013, vol. 8, no. 8: e72773. doi: 10.1371/journal.pone.0072773
- Kondratieva E.V., Logunova N.N., Majorov K.B., Averbakh M.M., Apt A.S. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS ONE, 2010, vol. 6, no. 5: e10515. doi: 10.1371/journal.pone.0010515
- Leepiyasakulchai C., Ignatowicz L., Pawlowski A., Källenius G., Sköld M. Failure to recruit anti-inflammatory CD103+ dendritic cells and a diminished CD4+ Foxp3+ regulatory T cell pool in mice that display excessive lung inflammation and increased susceptibility to Mycobacterium tuberculosis. Infect. Immun., 2012, vol. 80, no. 3, pp. 1128–1139. doi: 10.1128/IAI.05552-11
- Liang B., Workman C., Lee J., Chew C., Dale B.M., Colonna L., Flores M., Li N., Schweighoffer E., Greenberg S., Tybulewicz V., Vignali D., Clynes R.. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol., 2008, vol. 180, no. 9, pp. 5916–5926. doi: 10.4049/jimmunol.180.9.5916
- Logunova N.N., Korotetskaya M.V., Polshakov V.I., Apt A.S. The QTL within the H2 complex involved in the control of tuberculosis infection in mice is the classical class II H2- Ab1 gene. PLoS Genet., 2015, vol. 11, no. 11: e1005672. doi: 10.1371/journal.pgen.1005672
- Lutz M.B., Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol., 2002, vol. 23, no. 9, pp. 445–449.
- Maldonado R.A., von Andrian U.H. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol., 2010, vol. 108, pp. 111–165. doi: 10.1016/B978-0-12-380995-7.00004-5
- O’Garra A., Redford P.S., McNab F.W., Bloom C.I., Wilkinson R.J., Berry M.P. The immune response in tuberculosis. Ann. Rev. Immunol., 2013, vol. 31, pp. 475–527. doi: 10.1146/annurev-immunol-032712-095939
- Owens B.M., Kaye P.M. Stromal cell induction of regulatory dendritic cells. Front. Immunol., 2012, vol. 3, 6 p. doi: 10.3389/fimmu.2012.00262
- Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., Hou T.Z., Futter C.E., Anderson G., Walker L.S.K., Sansom D.M. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science, 2011, vol. 332, iss. 6029, pp. 600–603. doi: 10.1126/science.1202947
- Radaeva T.V., Kondratieva E.V., Sosunov V.V., Majorov K.B., Apt A.S. A human-like TB in genetically susceptible mice followed by the true dormancy in a Cornell-like model. Tuberculosis (Edinb.), 2008, vol. 88, iss. 6, pp. 576–585. doi: 10.1016/j.tube.2008.05.003
- Reece S.T., Kaufmann S.H.E. Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? Curr. Opin. Microbiol., 2012, vol. 15, iss. 1, pp. 63–70. doi: 10.1016/j.mib.2011.10.006
- Rook G.A.W., Hernandez-Pando R. The pathogenesis of tuberculosis. Ann. Rev. Microbiol., 1996, vol. 50, pp. 259–284. doi: 10.1146/annurev.micro.50.1.259
- Sakaguchi S., Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int. Immunol., 2009, vol. 21, no. 10, pp. 1105–1111. doi: 10.1093/intimm/dxp095
- Sakai S., Kauffman K.D., Sallin M.A., Sharpe A.H., Young H.A., Ganusov V.V., Barber D.L. CD4 T cell-derived IFNγ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog., 2016, vol. 12, no. 5: e1005667. doi: 10.1371/journal.ppat.1005667
- Shepelkova G., Evstifeev V., Majorov K., Bocharova I., Apt A. Therapeutic effect of recombinant mutated interleukin 11 in the mouse model of tuberculosis. J. Infect. Dis., 2016, vol. 214, iss. 3, pp. 496–501. doi: 10.1093/infdis/jiw176
- Smits H.H., de Jong E.C., Wierenga E.A., Kapsenberg M.L. Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol., 2005, vol. 26, no. 3, pp. 123–129. doi: 10.1016/j.it.2005.01.002
- Steinman R.M., Hawiger D., Nussenzweig M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol., 2003, vol. 21, pp. 685–711. doi: 10.1146/annurev.immunol.21.120601.141040
- Torrado E., Robinson R.T., Cooper A.M. Cellular response to mycobacteria: balancing protection and pathology. Trends Immunol., 2011, vol. 32, no. 2, pp. 66–72. doi: 10.1016/j.it.2010.12.001
- Tsai M.C., Chakravarty S., Zhu G., Xu J., Tanaka K., Tufariello J., Flynn J., Chan J. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol., 2006, vol. 8, no. 2, pp. 218– 232. doi: 10.1111/j.1462-5822.2005.00612.x
- Wang J., Lu Z.H., Gabius H.J., Rohowsky-Kochan C., Ledeen R.W., Wu G. Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J. Immunol., 2009, vol. 182, no. 7, pp. 4036–4045. doi: 10.4049/jimmunol.0802981
- Yeremeev V.V., Linge I.A., Kondratieva T.K., Apt A.S. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb.), 2015, vol. 95, no. 4, pp. 447– 451. doi: 10.1016/j.tube.2015.03.007.