CD8 T CELLS IN MICE WITH DIFFERENT GENETIC SUSCEPTIBILITY TO ANTI-TUBERCULOUS IMMUNE RESPONSE
- Authors: Logunova N.1, Kapina M.1, Linge I.1, Kondratieva E.1, Apt A.1
-
Affiliations:
- Central Tuberculosis Research Institute, Moscow, Russia
- Section: ORIGINAL ARTICLES
- Submitted: 09.07.2025
- Accepted: 02.08.2025
- URL: https://iimmun.ru/iimm/article/view/17960
- DOI: https://doi.org/10.15789/2220-7619-CTC-17960
- ID: 17960
Cite item
Full Text
Abstract
Abstract
In spite of decades of studying the role for CD8+ T-cells in response to tuberculosis (TB) infection, it remains only partly understood. Even less is known how the level of host genetic susceptibility to TB infection influences the involvement of these cells in immune response. Our lab established MHC-II-congenic mouse strains with different levels of genetic susceptibility to TB infection dependent exclusively upon quantitative and qualitative differences in organization of relevant CD4 T-cell populations and lacking major defects in immune systems. In the present work, we investigated how the in vivo lack of CD8+ T-cells affects related capacity to combat TB infection. To this end, we developed a novel double-congenic mouse strain В6.I-9.3-β2M-/- that lacks CD8 T cells due to a knockout mutation in the gene encoding β2-microglobulin and differs from the parental B6 strain by the MHC-II allele. We performed a comparative study of TB development and immune response using four mouse strains: the ancestor В6 and B6.I-9.3 pair vs. CD8-deficient В6-β2M-/- and В6.I-9.3-β2M-/- pair. CD8 T-cell deficiency did not alter lung mycobacterial multiplication during the first 4 weeks post TB challenge; however, at day 90 lung mycobacterial population increased to significantly higher levels in В6β2М-/- compared to B6 mice. Post-infection life span of both CD8 T-cell-deficient mouse strains was dramatically shorter than that of the wild type animals. En mass, negative effects of CD8 cell deficiency looked more pronounced on the MHC-II allele background, which in the presence of CD8 cells is associated with better protection against infection. In addition, the lack of CD8+ cells resulted in significantly decreased size of TNF-positive CD4+ T-cell populations in mice from both β2M-/- strains at week 4 post-challenge. This is consistent with a previously non-described helper function of CD8 cells for the TNF synthesis by CD4 cells. We discuss the results obtained within the context of dynamical interactions between T-cell populations during chronic TB infection.
About the authors
Nadezhda Logunova
Central Tuberculosis Research Institute, Moscow, Russia
Email: nadezda2004@yahoo.com
PhD, MD, Senior Staff Scientist
РоссияMarina Kapina
Central Tuberculosis Research Institute, Moscow, Russia
Email: makapina@mail.ru
PhD, Senior Staff Scientist
РоссияIrina Linge
Central Tuberculosis Research Institute, Moscow, Russia
Email: iralinge@gmail.com
PhD, Leading Scientist
РоссияElena Kondratieva
Central Tuberculosis Research Institute, Moscow, Russia
Email: alyonakondratyeva74@gmail.com
PhD, Senior Staff Scientist
РоссияAlexander Apt
Central Tuberculosis Research Institute, Moscow, Russia
Author for correspondence.
Email: alexapt0151@gmail.com
PhD, Professor and Head, Laboratory for Immunogenetics,
Central Tuberculosis Research Institute
РоссияReferences
- Allie N., Grivennikov S.I., Keeton R., Hsu N.J., Bourigault M.L., Court N., Fremond C., Yeremeev V., Shebzukhov Y, Ryffel B., Nedospasov S.A., Quesniaux V.F., Jacobs M. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci. Rep., 2013, vol. 3, pp. 1809. doi: 10.1038/srep01809
- Billerbeck E., Wolfisberg R., Fahnoe U., Xiao J.W., Quirk C., Luna J.M., Cullen J.M., Hartlage A.S., Chiriboga L., Ghoshal K., Lipkin W. I., Bukh J., Scheel T., Kapoor A., Rice C. M. Mouse models of acute and chronic hepacivirus infection. Science 2017, vol. 357, no. 6347, pp. 204–208.
- doi: 10.1126/science.aal1962
- Cadena A. M., Flynn J.L., Fortune S.M. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. mBio 2016, vol. 7, no. 2, pp. e00342-16.
- doi: 10.1128/mBio.00342-16
- Chan E.D., Chan J., Schluger N.W. What is the role of nitric oxide in murine and human host defense against tuberculosis? Current knowledge. Am. J. Respir. Cell. Mol. Biol. 2001, vol. 25, no. 5, pp. 606-612. doi: 10.1165/ajrcmb.25.5.4487
- Chang E., Cavallo K., Behar S.M. CD4 T cell dysfunction is associated with bacterial recrudescence during chronic tuberculosis. Nat. Commun. 2025, vol. 16, no. 1 pp. 2636.
- doi: 10.1038/s41467-025-57819-1
- Cooper A. M., D’Souza C., Frank A. A., Orme I. M.. The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect. Immun. 1997, vol. 65, no. 4 pp. 1317–1320.
- doi: 10.1128/iai.65.4.1317-1320.1997
- Derrick S.C., Yabe I.M., Yang A., Morris S.L. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine 2011, vol. 29 no. 16, pp. 2902–2909.
- doi: 10.1016/j.vaccine.2011.02.010
- Dutronc Y., Porcelli S. A. The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 2002, vol. 60, no. 5, pp. 337-353.
- doi: 10.1034/j.1399-0039.2002.600501.x
- Flynn J. L., Goldstein M. M., Triebold K. J., Koller B., Bloom B. R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 1992, vol. 89, no. 24, pp. 12013–12017. doi: 10.1073/pnas.89.24.12013
- Hunter R.L., Actor J.K., Hwang S.A., Khan A., Urbanowski M.E., Kaushal D., Jagannath C. Pathogenesis and animal models of post-primary (bronchogenic) tuberculosis, A review. Pathogens 2018, vol. 7 no.1, pp. 19.
- doi: 10.3390/pathogens7010019
- Jaiswal S., Fatima S., de la Cruz E. V., Kumar S. Unraveling the role of the immune landscape in tuberculosis granuloma. Tuberculosis (Edinb.) 2025, vol. 152, pp. 102615.
- doi: 10.1016/j.tube.2025.102615
- Kireev F.D., Lopatnikova J.A., Alshevskaya A.A., Sennikov S.V. Role of tumor necrosis factor in tuberculosis. Biomolecules 2025, vol. 15 no.5, pp. 709.
- doi: 10.3390/biom15050709
- Kondratieva E., Logunova N., Majorov K., Averbakh M., Apt A. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One 2010, vol. 5, no. 5, pp. e10515.
- doi: 10.1371/journal.pone.0010515
- Laochumroonvorapong P., Wang C.-C., Liu W, Ye A. L., Moreira K. B., Elkon V., Freedman H., Kaplan G. Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice. Infect. Immun. 1997, vol. 65, no. 1, pp. 127–132.
- doi: 10.1128/iai.65.1.127-132.1997
- Lewinsohn D.A., Winata E., Swarbrick G.M., Tanner K.E., Cook M.S., Null M. D.,Cansler M.E., Sette A., Sidney J., Lewinsohn D. M. Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B. PLoS Pathog. 2007, vol. 3, no. 9, pp. 1240-1249.
- doi: 10.1371/journal.ppat.0030127
- Lin P. L., Flynn J. L. CD8 T cells and Mycobacterium tuberculosis infection. Semin. Immunopathol. 2015, vol. 37, no.3, pp. 239-249.
- doi: 10.1007/s00281-015-0490-8
- Logunova N., Kapina M., Dyatlov A., Kondratieva T., Rubakova E., Majorov K., Kondratieva E., Linge I., Apt A. Polygenic TB control and the sequence of innate/adaptive immune responses to infection: MHC-II alleles determine the size of the S100A8/9-producing neutrophil population. Immunology 2024, vol. 173, no.2, pp. 381-393.
- doi: 10.1111/imm.13836.
- Logunova N., Korotetskaya M., Polshakov V., Apt A. The QTL within the H2 complex involved in the control of tuberculosis Infection in mice Is the classical Class II H2-Ab1 gene. PLoS Genet. 2015, vol. 11, no. 11, pp. e1005672.
- doi: 10.1371/journal.pgen.1005672.
- Logunova N.N., Kriukova V.V., Shelyakin P.V., Egorov E.S., Pereverzeva A., Bozhanova N.G., Shugay M., Shcherbinin D.S., Pogorelyy M.V., Merzlyak E.M., Zubov V.N., Meiler J., Chudakov D.M., Apt A.S., Britanova O.V. MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc. Natl. Acad. Sci. U S A. 2020, vol. 117, no. 24, pp. 13659-13669.
- doi: 10.1073/pnas.2003170117.
- Lopez-Scarim J., Mendoza D., Nambiar S.M., Billerbeck E. CD4+ T cell help during early acute hepacivirus infection is critical for viral clearance and the generation of a liver-homing CD103+CD49a+ effector CD8+ T cell subset. PLoS Pathog. 2024, vol. 20, no. 10, pp. e1012615.
- doi.org/10.1371/journal.ppat.1012615.
- Lu Y.J., Barreira-Silva P., Boyce S., Powers J., Cavallo K., Behar S.M. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 2021, vol. 36, no. 11, pp. 109696.
- doi: 10.1016/j.celrep.2021.109696.
- Lyadova I.V., Eruslanov E.B., Khaidukov S.V., Yeremeev V.V., Majorov K.B., Pichugin A.V., Nikonenko B.V., Kondratieva T.K., Apt A.S. Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. J. Immunol. 2000, vol. 165, no.10, pp. 5921-5931.
- doi: 10.4049/jimmunol.165.10.5921
- Majorov K .B., Lyadova I.V., Kondratieva T.K., Eruslanov E.B., Rubakova E.I., Orlova M.O., Mischenko V.V., Apt A.S. Different innate ability of I/St and A/Sn mice to combat virulent Mycobacterium tuberculosis: phenotypes expressed in lung and extrapulmonary macrophages. Infect. Immun. 2003, vol. 71. No. 2, pp. 697-707.
- doi: 10.1128/IAI.71.2.697-707.2003
- McLane L.M., Abdel-Hakeem M.S., Wherry E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 2019, vol. 37, pp. 457–495.
- doi: 10.1146/annurev-immunol-041015-055318
- Mott D., Yang J., Baer C., Papavinasasundaram. K, Sassetti. C.M., Behar S.M. High bacillary burden and the ESX-1 type VII secretion system promote MHC Class I presentation by Mycobacterium tuberculosis-Infected macrophages to CD8 T cells. J. Immunol. 2023, vol. 210, no.10, pp.1531-1542.
- doi: 10.4049/jimmunol.2300001
- Patankar Y.R., Sutiwisesak R., Boyce S., Lai R., Lindestam Arlehamn C.S., Sette A., Behar S.M. Limited recognition of Mycobacterium tuberculosis-infected macrophages by polyclonal CD4 and CD8 T cells from the lungs of infected mice. Mucosal Immunol. 2020, vol. 13, no.1, pp.140-148.
- doi: 10.1038/s41385-019-0217-6
- Paterson R.L., La Manna M.P., Arena De Souza V., Walker A., Gibbs-Howe D., Kulkarni R., Fergusson J.R., Mulakkal N.C., Monteiro M., Bunjobpol W., Dembek M., Martin-Urdiroz M., Grant T., Barber C., Garay-Baquero D.J., Tezera L.B., Lowne D., Britton-Rivet C., Pengelly R., Chepisiuk N., Singh P.K., Woon A.P., Powlesland A.S., McCully M.L., Caccamo N., Salio M., Badami G.D., Dorrell L., Knox A., Robinson R., Elkington P., Dieli F., Lepore M., Leonard S., Godinho L.F.. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2024, vol. 121, no. 19, pp. e2318003121. doi: 10.1073/pnas.2318003121
- Radaeva T.V., Nikonenko B.V., Mischenko V.V., Averbakh M.M. Jr, Apt A.S. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice. Tuberculosis (Edinb) 2005, vol. 85, no 1-2, pp. 65-72.
- doi: 10.1016/j.tube.2004.09.014
- Reilly E.C., Sportiello M., Emo K.L., Amitrano A.M., Jha R., Kumar A.B.R., Laniewski N.G., Yang H., Kim M., Topham D.J. CD49a Identifies polyfunctional memory CD8 T cell subsets that persist in the lungs after influenza infection. Front. Immunol. 2021, vol.12, pp. 728669. doi: 10.3389/fimmu.2021.728669.
- Rodo M.J., Rozot V., Nemes E., Dintwe O., Hatherill M., Little F., Scriba T.J. A comparison of antigen-specific T cell responses induced by six novel tuberculosis vaccine candidates. PLoS Pathog. 2019, vol. 15, no. 3, pp. e1007643.
- doi: 10.1371/journal.ppat.1007643.
- Stenger S., Hanson D.A., Teitelbaum R., Dewan P., Niazi K.R., Froelich C.J., Ganz T., Thoma-Uszynski S., Melián A., Bogdan C., Porcelli S.A., Bloom B.R., Krensky A.M., Modlin R.L. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998, vol. 282 no. 5386, pp. 121-125.
- doi: 10.1126/science.282.5386.121
- Silva B.D.S., Trentini M.M., da Costa A.C., Kipnis A., Junqueira-Kipnis A.P. Different phenotypes of CD8+ T cells associated with bacterial load in active tuberculosis. Immunol. Lett. 2014, vol. 160, no. 1, pp. 23-32. doi: 10.1016/j.imlet.2014.03.009.
- Tascon R.E., Stavropoulos E., Lukacs K.V., Colston M.J. Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect. Immun. 1998, vol. 66, no.2, pp. 830-834.
- doi: 10.1128/IAI.66.2.830-834.1998
- Thakur P., Sutiwisesak R., Lu Y.J., Behar S.M. Use of the human granulysin transgenic mice to evaluate the role of granulysin expression by CD8 T cells in immunity to Mycobacterium tuberculosis. mBio 2022, vol. 13, no. 6, pp. e0302022.
- doi: 10.1128/mbio.03020-22
- Vats D., Rani G., Arora A., Sharma V., Rathore I., Mubeen S.A., Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb). 2024, vol. 149, pp. 102567.
- doi: 10.1016/j.tube.2024.
- Yang J.D., Mott D., Sutiwisesak R., Lu Y.J., Raso F., Stowell B., Babunovic G.H., Lee J., Carpenter S.M., Way S.S., Fortune S.M., Behar S.M. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages. PLoS Pathog. 2018, vol. 14, no. 5, pp. e1007060.
- doi: 10.1371/journal.ppat.1007060
Supplementary files
