Tuberculosis outcomes related to the Mycobacterium tuberculosis genotype

Cover Page


Cite item

Full Text

Abstract

Mycobacterium tuberculosis strains of different phylogenetic lineages and genetic families differ in biological properties that determine, to some extent, epidemiological features and clinical manifestation in tuberculosis (TB) patients.

The aim of the study was to assess the risk of an adverse outcome of the disease in TB patients caused by various M. tuberculosis genotypes.

Materials and methods. A total of 425 patients with respiratory TB were enrolled in this study. They were registered at phthisiatric facilities in the Omsk region from March 2015 to June 2017 period and included: males — 73.1%, mean age 39.9 years, females — 26.9%, mean age 42.0 years. M. tuberculosis culture and drug susceptibility testing and DNA extraction were performed in accordance with standard methods. Strains were assigned to the M. tuberculosis Beijing genotype and its epidemiologically relevant clusters B0/W148 and 94-32 by PCR based detection of specific markers. Non-Beijing strains were subjected to spoligotyping.

Results. We found that 66.5% isolates belonged to the Beijing genotype, 12.8% — to LAM, 10.1% — to T, and 4.7% — to the Ural genotype. Multi-drug resistance (MDR) to anti-TB drugs was observed in 195 M. tuberculosis strains (45.9%). Moreover, Beijing genotype was more often isolated from patients with MDR-TB infection (PR = 2.09 (95% CI 1.6–2.74) and TB infection associated with HIV infection (PR = 1.14 (95% CI 1.01–1.31). Lethal outcome was double higher in patients infected with Beijing vs. non-Beijing strains, 28.6% vs. 14.0% (PR = 2.03; 95% CI 1.3–3.17). The risk factors were identified as follows: young age 18–44 years (RR = 1.7; 95% CI 1.18–2.7), co-morbidity with HIV (RR = 5.0; 95% CI 3.39–7.45), multiple (RR = 1.7; 95% CI 1.14–2.55) and extensive drug resistance (RR = 2.57; 95% CI 1.35–4.92), and association with the Beijing genotype (RR = 2.0, 95% CI 1.3–3.17).

Conclusion. M. tuberculosis spread in the Omsk region is characterised by significant prevalence of the Beijing genotype, associated with multiple and extensive drug resistance. A significant association of adverse clinical outcomes and various factors, including association with the Beijing genotype, requires development of new approaches in the fight against tuberculosis.

About the authors

O. A. Pasechnik

Omsk State Medical University

Author for correspondence.
Email: opasechnik@mail.ru

PhD (Medicine), Senior Lecturer, Department of Epidemiology,

Omsk

Россия

A. A. Vyazovaya

St. Petersburg Pasteur Institute

Email: elmtree2001@mail.ru

PhD (Biology), Senior Researcher, Laboratory of Molecular Epidemiology and Evolutionary Genetics,

St. Petersburg

Россия

M. A. Dymova

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences

Email: maya.a.rot@gmail.com

PhD (Biology), Senior Researcher, Laboratory of Biotechnology,

Novosibirsk

Россия

A. I. Blokh

Omsk State Medical University

Email: spy_spirit@mail.ru

Assistant Professor, Department of Epidemiology,

Omsk

Россия

V. L. Stasenko

Omsk State Medical University

Email: vlstasenko@yandex.ru

PhD, MD (Medicine), Professor, Head of the Department of Epidemiology,

Omsk

Россия

M. P. Tatarintseva

Clinical Tuberculosis Dispensary

Email: buzoo_kptd@mail.ru

Head of the Clinical Tuberculosis Dispensary,

Omsk

Россия

I. V. Mokrousov

St. Petersburg Pasteur Institute

Email: imokrousov@mail.ru

PhD, MD (Biology), Head of the Laboratory of Molecular Epidemiology and Evolutionary Genetics,

St. Petersburg

Россия

References

  1. ВОЗ. Доклад о глобальной борьбе с туберкулезом 2018 год. URL: https://www.who.int/tb/publications/global_report/gtbr2018_executive_summary_ru.pdf?ua=1 (22.07.2019)
  2. Исаева Т.Х., Васильева И.А., Черноусова Л.Н. Особенности течения впервые выявленного туберкулеза легких в зависимости от генотипа M. tuberculosis // Инфекционные болезни. 2011. Т. 9, № 2. С. 68–72.
  3. Стратегия ВОЗ по ликвидации туберкулеза: цели и показатели. URL: https://www.who.int/tb/strategy/end-tb/ru (22.07.2019)
  4. Caws M., Thwaites G., Stepniewska K., Nguyen T.N., Nguyen T.H., Nguyen T.P., Mai N.T., Phan M.D., Tran H.L., Tran T.H., van Soolingen D., Kremer K., Nguyen V.V., Nguyen T.C., Farrar J. Beijing genotype of Mycobacterium tuberculosis is significantly associated with human immunodeficiency virus infection and multidrug resistance in cases of tuberculous meningitis. J. Clin. Microbiol., 2006, vol. 44, no. 11, pp. 3934–3939. doi: 10.1128/JCM.01181-06
  5. Coscolla M. Biological and epidemiological consequences of MTBC Diversity. Adv. Exp. Med. Biol., 2017, vol. 1019, pp. 95–116. doi: 10.1007/978-3-319-64371-7_5
  6. Coscolla M., Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin. Immunol., 2014, vol. 26, no. 6, pp. 431–444. doi: 10.1016/j.smim.2014.09.012
  7. Folkvardsen D.B., Norman A., Andersen Å.B., Rasmussen E.M., Lillebaek T., Jelsbak L. A major Mycobacterium tuberculosis outbreak caused by one specific genotype in a low-incidence country: Exploring gene profile virulence explanations. Sci. Rep., 2018, vol. 8, no. 1, p. 11869. doi: 10.1038/s41598-018-30363-3
  8. Kamerbeek J., Schouls L., Kolk A., van Agterveld M., van Soolingen D., Kuijper S., Bunschoten A., Molhuizen H., Shaw R., Goyal M., van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol., 1997, vol. 35, no. 4, pp. 907–914.
  9. Kong Y., Cave M.D., Zhang L., Foxman B., Marrs C.F., Bates J.H., Yang Z.H. Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J. Clin. Microbiol., 2007, vol. 45, no. 2, pp. 409–414. doi: 10.1128/JCM.01459-06
  10. Mokrousov I., Vyazovaya A., Zhuravlev V., Otten T., Millet J., Jiao W.W., Shen A.D., Rastogi N., Vishnevsky B., Narvskaya O. Realtime PCR assay for rapid detection of epidemiologically and clinically significant Mycobacterium tuberculosis Beijing genotype isolates. J. Clin. Microbiol., 2014, vol. 52, pp. 1691–1693. doi: 10.1128/JCM.03193-13
  11. Mokrousov I., Narvskaya O., Vyazovaya A., Otten T., Jiao W.W., Gomes L.L., Suffys P.N., Shen A.D., Vishnevsky B. Russian “successful” clone В0/W148 of Mycobacterium tuberculosis Beijing genotype: multiplex PCR assay for rapid detection and global screening. J. Clin. Microbiol., 2012, vol. 50, no. 11, pp. 3757–3759. doi: 10.1128/JCM.02001-12
  12. Mokrousov I., Chernyaeva E., Vyazovaya A., Skiba Y., Solovieva N., Valcheva V., Levina K., Malakhova N., Jiao W.W., Gomes L.L., Suffys P.N., Kütt M., Aitkhozhina N., Shen A.D., Narvskaya O., Zhuravlev V. Rapid assay for detection of the epidemiologically important Central Asian/Russian strain of the Mycobacterium tuberculosis Beijing genotype. J. Clin. Microbiol., 2018, vol. 24, no. 56 (2): e01551-17. doi: 10.1128/JCM.01551-17
  13. Ribeiro S.C., Gomes L.L., Amaral E.P., Andrade M.R., Almeida F.M., Rezende A.L., Lanes V.R., Carvalho E.C., Suffys P.N., Mokrousov I., Lasunskaia E.B. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J. Clin. Microbiol., 2014, vol. 52, no. 7, pp. 2615–2624. doi: 10.1128/JCM.00498
  14. Thwaites G., Caws M., Chau T.T., D’Sa A., Lan N.T., Huyen M.N., Gagneux S., Anh P.T., Tho D.Q., Torok E., Nhu N.T., Duyen N.T., Duy P.M., Richenberg J., Simmons C., Hien T.T., Farrar J. Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. J. Clin. Microbiol., 2008, vol. 46, no. 4, pp. 1363–1368. doi: 10.1128/JCM.02180-07
  15. Van Embden J.D., Cave M.D., Crawford J.T., Dale J.W., Eisenach K.D., Gicquel B., Hermans P., Martin C., McAdam R., Shinnick T.M. Strain identification on Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol., 1993, vol. 31, pp. 406–409.
  16. Viegas S.O., Machado A., Groenheit R., Ghebremichael S., Pennhag A., Gudo P.S., Cuna Z., Langa E., Miotto P., Cirillo D.M., Rastogi N., Warren R.M., van Helden P.D., Koivula T., Källenius G. Mycobacterium tuberculosis Beijing genotype is associated with HIV infection in Mozambique. PLoS One, 2013, vol. 8, no. 8: e71999. doi: 10.1371/journal.pone.0071999
  17. Wada T., Iwamoto T., Maeda S. Genetic diversity of the Mycobacterium tuberculosis Beijing family in East Asia revealed through refined population structure analysis. FEMS Microbiol Lett., 2009, vol. 291, no. 1, pp. 35–43. doi: 10.1111/j.1574-6968.2008.01431.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pasechnik O.A., Vyazovaya A.A., Dymova M.A., Blokh A.I., Stasenko V.L., Tatarintseva M.P., Mokrousov I.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies