Engineering E. coli recombinant strains for high yield production of Burkholderia pseudomallei specific antigens

Cover Page

Cite item

Abstract

A risk of introducing into the Russian Federation exotic infections including laboratory-confirmed melioidosis regularly recorded worldwide necessitates development and improvement of express diagnostics tools. Cross reactivity between phylogenetically related species of the genus Burkholderia complicates melioidosis diagnostics by express test methods based on using monoclonal antibodies against pathogen exopolysaccharide epitopes. Searching for target antigens to create the next generation group- and species-specific immunodiagnostic reagents for identifying Burkholderia pseudomallei is still of high priority. The study was aimed at cloning complete coding sequences for cell surface proteins differentiating  Burkholderia pseudomallei and optimizing recombinant antigens purification protocol. In silico comparative study allowed to select highly immunogenic B. pseudomallei outer membrane proteins Omp38 and OmpA/МotB as target biomolecules. For cloning, omp38 and ompA/motB gene-specific amplicons were obtained by PCR and ligated with the linear expression vector RIC-Ready pPAL7. Competent E. coli C-Max5α cells were transformed by a ligation mixture for producing recombinant plasmids, which were further purified to transform E. coli BL21 (DE3) cells for robust recombinant protein expression. Due to a potential multimeric protein structure, a standard protein purification protocol from native cell lysate was inefficient, which was modified to increase recombinant protein yield. However, by adding denaturing conditions at intermediate purification steps caused hydrolysis of peptide bonds in the target proteins, presumably between proline and asparagine residues. As a result, N-terminal fragments connecting recombinant proteins to the stationary phase of chromatographic column were eluted and evaluated for linear epitope detection according to their molecular weights. In silico analysis data identified highly antigenic motifs within the polypeptides studied. Thus, strains of E. coli BL21(DE3) BpsOmp39 and E. coli BL21(DE3) BpsOmpА engineered by us produce cell surface proteins Omp38 and ОmpA/МotB derived from melioidosis pathogen, which can be useful for developing diagnostic test systems.

About the authors

Yu. A. Kuzyutina

Volgograd Plague Control Research Institute

Email: 6uoxumuk@mail.ru

Yulia A. Kuzyutina - Researcher, Laboratory of Pathogenic Burkholderia, Volgograd Plague Control Research Institute.

400131, Volgograd, Golubinskaya str., 7.

Phone: +7 (8442) 37-37-74. Fax: +7 (8442) 39-33-36.

Russian Federation

I. B. Zakharova

Volgograd Plague Control Research Institute

Email: xxx@mail.ru

PhD (Biology), Associate Professor, Head of the Department of Microbiology.

400131, Volgograd, Golubinskaya str., 7.

Russian Federation

D. V. Viktorov

Volgograd Plague Control Research Institute

Author for correspondence.
Email: xxx@mail.ru

PhD, MD (Biology), Associate Professor, Deputy Director for Scientific and Experimental Work, Volgograd Plague Control Research Institute.

400131, Volgograd, Golubinskaya str., 7.

Russian Federation

References

  1. Викторов Д.В., Захарова И.Б., Кузютина Ю.А., Лопастейская Я.А. Набор 5’-фосфорилированных олигонуклеотидных праймеров для амплификации методом полимеразной цепной реакции полной кодирующей последовательности гена ompA/motB Burkholderia pseudomallei. Патент РФ, 2608505, C12N1/00, C12Q1/68. 2017.
  2. Кузютина Ю.А., Захарова И.Б., Савченко С.С., Лопастейская Я.А., Молчанова Е.В., Викторов Д.В. Поиск потенциальных мишеней для детекции и дифференциации штаммов возбудителей мелиоидоза и сапа // Вестник ВолгГМУ. 2016. № 4 (60). С. 114–117.
  3. Онищенко Г.Г., Сандахчиев Л.С., Нетесов С.В., Мартынюк Р.А. Биотерроризм: национальная и глобальная угроза // Вестник РАН. 2003. Т. 73, № 3. С. 195–204.
  4. Тетерятникова Н.Н., Захарова И.Б., Подшивалова М.В., Романова А.В., Лопастейская Я.А., Викторов Д.В., Алексеев В.В. Молекулярная детекция интегронов класса 1 у Burkholderia pseudomallei // Проблемы особо опасных инфекций. 2011. № 2 (108). С. 46–49.
  5. Храпова Н.П., Алексеев В.В. Современное состояние серодиагностики мелиоидоза // Проблемы особо опасных инфекций. 2011. № 4 (110). С. 18–22.
  6. Bielecka M.K., Devos N., Gilbert M., Hung M.C., Weynants V., Heckels J. E., Christodoulides M. Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins. Infect. Immun., 2015, vol. 83, no. 2, pp. 730 –742. doi: 10.1128/IAI.01815-14
  7. Currie B.J., Dance D.A.B., Cheng A.C. The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans. R. Soc. Trop. Med. Hyg., 2008, vol. 102, pp. S1–S4. doi: 10.1016/S0035-9203(08)70002-6
  8. Gauthier J., Gerome P., Defez M., Neulat-Ripoll F., Foucher B., Vitry T., Crevon L., Valade E., Thibault F.M., Biot F.V. Melioidosis in travelers returning from Vietnam to France. Emerg. Infect. Dis., 2016, vol. 22, no. 9, pp. 1671–1673. doi: 10.3201/eid2209.160169
  9. Reyes A.W.B., Simborio H.L.T., Hop H.T., Arayan L.T., Kim S. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein. J. Vet. Sci., 2016, vol. 17, no. 1, pp. 119–122. doi: 10.4142/jvs.2016.17.1.119
  10. Siritapetawee J., Prinz H., Krittanai C., Suginta W. Expression and refolding of Omp38 from Burkholderia pseudomallei and Burkholderia thailandensis, and its function as a diffusion porin. J. Biochem., 2004, vol. 384, no. 3, pp. 609–617. doi: 10.1042/BJ20041102
  11. Tabll A., Abbas A.T., El-Kafrawy S., Wahid A. Monoclonal antibodies: principles and applications of immunodiagnosis and immunotherapy for hepatitis C virus. World J. Hepatol., 2015, vol. 7, no. 22, pp. 2369–2383. doi: 10.4254/wjh.v7.i22.2369
  12. Tarelli E., Corran P.H. Ammonia cleaves polypeptides at asparagine proline bonds. J. Pept. Res. 2003, vol. 62, no. 6, pp. 245–251.
  13. Trivedi P., Tuteja U., Khushiramani R., Reena J., Batra H.V. Development of a diagnostic system for Burkholderia pseudomallei infections. World J. Microbiol. Biotechnol., 2012, vol. 28, no. 7, pp. 2465–2471. doi: 10.1007/s11274-012-1053-y
  14. Workgroup, Planning. Biological and chemical terrorism: strategic plan for preparedness and response. MMWR, 2000, vol. 49, no. RR-4, pp. 1–26.
  15. Zhao S., Shi J., Zhang C., Zhao Y., Mao F., Yang W., Bai B., Zhang H., Shi C., Xu Z. Monoclonal antibodies against a Mycobacterium tuberculosis Ag85B-Hsp16. 3 fusion protein. Hybridoma, 2011, vol. 30, no. 5, pp. 427–432. doi: 10.1089/hyb.2011.0047

Supplementary files

There are no supplementary files to display.


Copyright (c) 2019 Kuzyutina Y.A., Zakharova I.B., Viktorov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies