Coherent fluctuation nephelometry in clinical microbiology
- Authors: Gur’ev A.S.1,2, Shalatova O.Y.3, Rusanova E.V.1, Vasilenko I.V.1, Volkov A.Y.2
-
Affiliations:
- Moscow Regional Research and Clinical Institute (MONIKI)
- Medtechnopark Ltd.
- Pasteur Institute of Epidemiology and Microbiology
- Issue: Vol 9, No 2 (2019)
- Pages: 385-392
- Section: METHODS
- Submitted: 24.04.2018
- Accepted: 17.04.2019
- Published: 13.05.2019
- URL: https://iimmun.ru/iimm/article/view/647
- DOI: https://doi.org/10.15789/2220-7619-2019-2-385-392
- ID: 647
Cite item
Full Text
Abstract
In this article data concerning coherent fluctuation nephelometry (CFN) use in clinical microbiology is presented. CFN-analyzer allows to solve two important problems – fast urine screening for bacteriuria within 2-4 hours and antibiotic susceptibility testing within 3-6 hours. Altogether more than 650 urine samples were tested, and the effectivity of CFN-analyzer for preliminary selection of samples for further analysis was shown. Method allows to detect negative samples, reducing the number of urine analyses by 70-80%. Simultaneous analysis of growth curves and concentration of microorganisms shows high sensitivity and specificity (95.2% и 96.9%). Also more than 250 antibiotic susceptibility tests were performed using CFN-analyzer to show its effectiveness for determination of resistant properties of both pure cultures and urine microflora without isolation of bacteria. The agreement with traditional methods was from 84% to 88%. The use of CFN-analyzer with express methods of identification of microorganisms (chromogenic nutrient broths or mass-spectrometry) allows to make full urine analysis within 1-2 days. In the future CFN-analyzer gives an opportunity to screen different human biological liquids, and finds an application for other microbiological tasks, including standardization and speeding-up in sanitary bacteriology.
About the authors
A. S. Gur’ev
Moscow Regional Research and Clinical Institute (MONIKI);Medtechnopark Ltd.
Author for correspondence.
Email: coherneph@mail.ru
ORCID iD: 0000-0001-8823-7819
PhD, Senior Researcher, Research Laboratory, M.F. Vladimirsky Moscow Regional Clinical and Research Institute (MONIKI); Researcher, Medtechnopark Ltd.
Contacts: Alexander S. Gur’ev 129110, Russian Federation, Moscow, Shchepkina str., 61/2, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI). Phone: +7 (906) 062-06-73.
РоссияO. Yu. Shalatova
Pasteur Institute of Epidemiology and Microbiology
Email: ont_olga@mail.ru
Junior Researcher, Laboratory of Biopreparations, Innovative Technologies Departmen ussian Federation; Researcher Россия
E. V. Rusanova
Moscow Regional Research and Clinical Institute (MONIKI)
Email: rusanova.microbiolog@yandex.ru
MD, PhD, Lead Researcher, Research Laboratory, M.F. Vladimirsky MONIKI; Chief Supernumerary Specialist in Bacteriology, Department of Healthcare of the Moscow Region Россия
I. V. Vasilenko
Moscow Regional Research and Clinical Institute (MONIKI)
Email: vasilenko0604@gmail.com
ORCID iD: 0000-0002-6374-9786
PhD, MD (Medicine), Professor, Head of the Research Laboratory ussian Federation; Researcher Россия
A. Yu. Volkov
Medtechnopark Ltd.
Email: md.volkov@mail.ru
ORCID iD: 0000-0001-5110-553X
PhD (Physics and Mathematics), Director of Medtechnopark LTD Россия
References
- Баранов А.А., Маянский А.Н., Чеботарь И.В., Маянский Н.А. Новая эпоха в медицинской микробиологии // Вестник Российской Академии наук. 2015. Т. 85, № 6. С. 907–909. doi: 10.1134/S1019331615060015
- Гурьев А.С., Волков А.Ю., Долгушин И.И., Поспелова А.В., Растопов С.Ф., Савочкина А.Ю., Сергиенко В.И. Когерентная флуктуационная нефелометрия — быстрый метод скрининга мочи на микробную обсемененность // Бюллетень экспериментальной биологии и медицины. 2015. Т. 159, № 1. С. 120–123. doi: 10.1007/s10517-015-2902-0
- Гурьев А.С., Кузнецова О.Ю., Пясецкая М.Ф., Смирнова И.А., Беляева Н.А., Вербов В.Н., Волков А.Ю. Быстрый скрининг мочи на бактериурию у детей с использованием микробиологического анализатора, совмещающего в себе методы фотометрии и когерентной флуктуационной нефелометрии // Инфекция и иммунитет. 2016. Т. 6, № 4. С. 395–398. doi: 10.15789/2220-7619-2016-4-395-398
- Растопов С.Ф. Когерентная флуктуационная нефелометрия: высокочувствительный метод детектирования частиц в жидкости // Приборы и техника эксперимента. 2011. Т. 54, № 6. С. 95–99. doi: 10.1134/S0020441211060194
- Станкевич Л.И., Герасимова. Е.С., Загорельский В.В. Скрининг бактериурии с помощью автоматизированной проточной цитометрии на анализаторе UF1000i Sysmex как инструмент для отбора образцов мочи на посев // Поликлиника. 2014. Т. 4, № 1. С. 13–16.
- Davenport M., Mach K.E., Shortliffe L.M.D., Banaei N., Wang T.H., Liao J.C. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol., 2017, vol. 14, no. 5, pp. 296–310. doi: 10.1038/nrurol.2017.20
- Gur’ev A.S., Kuznetsova O.Yu., Kraeva L.A., Rastopov S.F., Verbov V.N., Vasilenko I.A., Rusanova E.V., Volkov A.Yu. Development of microbiological analyzer based on coherent fluctuation nephelometry. In: Advances in artificial systems for medicine and education. Eds. Hu Z., Petoukhov S., He M. Springer, 2018, vol. 658, pp. 198–206. doi: 10.1007/978-3-319-67349-3_18
- Gur’ev A.S., Yudina I.E., Lazareva A.V., Volkov A.Yu. Coherent fluctuation nephelometry as a promising method for diagnosis of bacteriuria. Pract. Lab. Med., 2018, vol. 12: e00106. doi: 10.1016/j.plabm.2018.e00106
- Maia M.R., Marques S., Cabrita A.R., Wallace R.J., Thompson G., Fonseca A.J., Oliveira H.M. Simple and versatile turbidimetric monitoring of bacterial growth in liquid cultures using a customized 3D printed culture tube holder and a miniaturized spectrophotometer: application to facultative and strictly anaerobic bacteria. Front. Microbiol., 2016, no. 7, pp. 1381. doi: 10.3389/fmicb.2016.01381
- U.S. EPA. Detection of biological suspensions using online detectors in a drinking water distribution system simulator. U.S. Environmental Protection Agency, 2010, EPA/600/R-10/005
- Zapata A., Ramirez-Arcos S. A comparative study of McFarland turbidity standards and the Densimat photometer to determine bacterial cell density. Curr. Microbiol., 2015, vol. 70, no. 6, pp. 907–909. doi: 10.1007/s00284-015-0801