OCCURRENCE OF SMALL HOMOLOGOUS AND COMPLEMENTARY FRAGMENTS IN HUMAN VIRUS GENOMES AND THEIR POSSIBLE ROLE
- Authors: Kharchenko E.P.1
-
Affiliations:
- I. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
- Issue: Vol 7, No 4 (2017)
- Pages: 393-404
- Section: ORIGINAL ARTICLES
- Submitted: 20.01.2018
- Accepted: 20.01.2018
- Published: 20.01.2018
- URL: https://iimmun.ru/iimm/article/view/597
- DOI: https://doi.org/10.15789/2220-7619-2017-4-393-404
- ID: 597
Cite item
Full Text
Abstract
With computer analysis occurrence of small homologous and complementary fragments (21 nucleotides in length) has been studied in genomes of 14 human viruses causing most dangerous infections. The sample includes viruses with (+) and (–) single stranded RNA and DNA-containing hepatitis A virus. Analysis of occurrence of homologous sequences has shown the existence two extreme situations. On the one hand, the same virus contains homologous sequences to almost all other viruses (for example, Ebola virus, severe acute respiratory syndrome-related coronavirus, and mumps virus), and numerous homologous sequences to the same other virus (especially in severe acute respiratory syndrome-related coronavirus to Dengue virus and in Ebola virus to poliovirus). On the other hand, there are rare occurrence and not numerous homologous sequences in genomes of other viruses (rubella virus, hepatitis A virus, and hepatitis B virus). Similar situation exists for occurrence of complementary sequences. Rubella virus, the genome of which has the high content of guanine and cytosine, has no complementary sequences to almost all other viruses. Most viruses have moderate level of occurrence for homologous and complementary sequences. Autocomplementary sequences are numerous in most viruses and one may suggest that the genome of single stranded RNA viruses has branched secondary structure. In addition to possible role in recombination among strains autocomplementary sequences could be regulators of translation rate of virus proteins and determine its optimal proportion in virion assembly with genome and mRNA folding. Occurrence of small homologous and complementary sequences in RNA- and DNA-containing viruses may be the result of multiple recombinations in the past and the present and determine their adaptation and variability. Recombination may take place in coinfection of human and/or common hosts. Inclusion of homologous and complementary sequences into genome could not only renew viruses but also serve as memory of existence of a competitor for host and means of counteraction against a competitor in coinfection being an analogy of the bacterial CRISPR/Cas system.
About the authors
E. P. Kharchenko
I. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
Author for correspondence.
Email: neuro.children@mail.ru
PhD, MD (Biology), Senior Researcher, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Россия
References
- Стент Г. Молекулярная биология вирусов и бактерий. М.: Мир, 1965. 467 с. [Stent G. Molekulyarnaya biologiya virusov i bakterii [Molecular biology of diruses and bacteria]. Moscow: Mir, 1965. 467 p.]
- Харченко Е.П. Возможные коллизии в иммунодиагностике вирусных инфекций и вакцинации // Инфекция и иммунитет. 2016. Т. 6, № 2. С. 157–164. [Kharchenko E.P. Immune epitope continuum of the protein relationships, poly- and autoreactivity of antibodies. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2016, vol. 6, no. 2, pp. 157–164. doi: 10.15789/2220-7619-20162-157-164 (In Russ.)]
- Харченко Е.П. Иммуноэпитопный континуум родства белков и полиреактивность и аутореактивность антител // Медицинская иммунология. 2015. Т. 17, № 4. C. 335–346. [Kharchenko E.P. Immune epitope continuum of the protein relationships, poly- and autoreactivity of antibodies. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 4, pp. 335–346. doi: 10.15789/1563-0625-2015-4-335-346 (In Russ.)]
- Aguiar E.R., Olmo R.P., Marques J.T. Virus-derived small RNAs: molecular footprints of host–pathogen interactions. Wiley Interdiscip. Rev. RNA, 2016, vol. 7, iss. 6, pp. 824–837. doi: 10.1002/wrna.1361
- Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip. Rev. RNA, 2013, vol. 4, iss. 3, pp. 267–278. doi: 10.1002/wrna.1159
- Gil A., Kenney L.L., Mishra R., Watkin L.B., Aslan N., Selin L.K. Vaccination and heterologous immunity: educating the immune system. Trans. R. Soc. Trop. Med. Hyg., 2015, vol. 109, no. 1, pp. 62–69. doi: 10.1093/trstmh/tru198
- Heler R., Marraffini L.A., Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol. Microbiol., 2014, vol. 93, iss. 1, pp. 1–9. doi: 10.1111/mmi.12640
- Jachiet P.A., Colson P., Lopez P., Bapteste E. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network. Genome Biol. Evol., 2014, vol. 6, iss. 9, pp. 2195–2205. doi: 10.1093/gbe/evu168
- Keele B.F., Giorgi E.E., Salazar-Gonzalez J.F., Decker J.M., Pham K.T., Salazar M.G., Sun C., Grayson T., Wang S., Li H., Wei X., Jiang C., Kirchherr J., Gao F., Anderson J., Ping L., Swanstrom R., Tomaras G., Blattner W., Goepfert P., Kilby J., Saag M., Delwart E., Busch M., Cohen M., Montefiori D., Haynes B., Gaschen B., Athreya G., Lee H., Wood N., Seoighe C., Perelson A., Bhattacharya T., Korber B.T., Hahn B., Shaw G. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 21, pp. 7552–7557. doi: 10.1073/pnas.0802203105
- Koonin E., Dolja V., Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 2015, vol. 479–480, pp. 2–25. doi: 10.1016/j.virol.2015.02.039
- Li M.L., Weng K.F., Shih S.R., Brewer G. The evolving world of small RNAs from RNA viruses. Wiley Interdiscip. Rev. RNA, 2016, vol. 7, iss. 5, pp. 575–588. doi: 10.1002/wrna.1351
- Nakanishi K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, vol. 7, iss. 5, pp. 637–660. doi: 10.1002/wrna.1356
- Perez J.T., Zlatev I., Aggarwal S., Subramanian S., Sachidanandam R., Kim B., Manoharan M., ten Oever B.R. A small-RNA enhancer of viral polymerase activity. J. Virol., 2012, vol. 86, no. 24, pp. 13475–13485. doi: 10.1128/JVI.02295-12
- Perez J.T., Varble A., Sachidanandam R., Zlatev I., Manoharan M., Garcia-Sastre A., ten Oever B.R. Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 25, pp. 11525– 11530. doi: 10.1073/pnas.1001984107
- Romanova L.I., Blinov V.M., Tolskaya E.A., Viktorova E.G., Kolesnikova M.S., Guseva E.A., Agol V.I. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology, 1986, vol. 155, no. 1, pp. 202–213.
- Selin L.K., Wlodarczyk M.F., Kraft A.R., Nie S., Kenney L.L., Puzone R., Celada F. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity, 2011, vol. 44, pp. 328–347.
- Stedman K.M. Deep recombination: RNA and ssDNA virus genes in DNA virus and host genomes. Annu. Rev. Virol., 2015, vol. 2, pp. 203–217. doi: 10.1146/annurev-virology-100114-055127
- Tay Y., Rinn J., Pandolfi P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, vol. 505, no. 7483, pp. 344–352. doi: 10.1038/nature12986
- Tycowski K.T., Guo Y., Lee N., Moss W.N., Vallery T.K., Xie M., Steitz J.A. Viral noncoding RNAs: more surprises. Genes. Dev., 2015, vol. 29, pp. 567–584.
- Umbach J.L., Yen H.L., Poon L.L., Cullen B.R. Influenza A virus expresses high levels of an unusual class of small viral leader RNAs in infected cells. MBio, 2010, vol. 1, no. 4: e00204-10. doi: 10.1128/mBio.00204-10