CRISPR/Cas-based diagnostic platforms

Cover Page


Cite item

Full Text

Abstract

Over the last few years, CRISPR/Cas systems have been extensively studied and used for a wide range of applied purposes. The variety of their applications is accounted for by the ability of Cas-type nucleases to targetly cleave specified nucleic acid sequences. In this case, the researcher might set the necessary sequence of the guiding elements in the CRISPR/Cas system, played by so-called single guide RNAs allowing it to act on select targets. This potential underlies one of the reasons for exerting interest in CRISPR/Cas systems. One of the first areas for applying these systems was its use for genomic editing. Later, the list of potential opportunities has been expanded: e.g., they can be used in gene therapy and epigenetic research. It is possible to create sgRNA libraries which might be used to create a pool of viral vectors applied for bacterial cell transformation with subsequent cas-protein transduction that cause target gene knockout. This approach allows finding genes responsible for resistance or sensibility to diverse substances. Using such systems in molecular diagnostics of infectious diseases is considered as one of the most promising directions allowing to detect even extremely low concentrations of pathogenic organisms in samples due to their specific nucleotide sequences. Simultaneously, such assays turn out to be accurate, rapid and easy to utilize. In addition, some platforms may work without using expensive equipment, because methods for fast and simple sample preparation have already been developed, whereas modern preamplification approaches allow to avoid applying thermocycling devices. Interestingly, a great amount of diverse types of natural CRISPR/Cas systems have been already discovered. Such abundance promotes development of multiple artificial systems, each of which exerting own unique characteristics. Therefore, a variety of diagnostic platforms with different properties are created on their basis that allows researchers and physicians to choose an optimal approach for performing specific tasks. For this reason, insights into structure and operation of CRISPR/Cas systems are necessary for selecting a suitable platform. The current classification of systems is based on such principles serving as the basis, in turn, for convenient evaluation of the very variety of molecular diagnostics platforms and presentation of the typical technical characteristics and nuances for each method. Thus, this review, which is mainly devoted to the platforms for molecular diagnostics of infectious diseases, also touches upon the issues of functioning, devices, and classification of CRISPR/Cas systems.

About the authors

A. A. Volkov

St. Petersburg Pasteur Institute

Author for correspondence.
Email: volkov.art.andr@gmail.com
ORCID iD: 0000-0002-9375-2943

Artemii A. Volkov - Junior Researcher, Group of Molecular Genetics of Pathogenic Microorganisms, St. Petersburg Pasteur Institute.

197101, St. Petersburg, Mira str., 14.

Phone: +7 921 361-73-09.

Russian Federation

A. S. Dolgova

St. Petersburg Pasteur Institute

Email: annadolgova@inbox.ru

PhD (Biology), Senior Researcher, Head of the Group of Molecular Genetics of Pathogenic Microorganisms, St. Petersburg Pasteur Institute.

197101, St. Petersburg, Mira str., 14.

Russian Federation

V. G. Dedkov

St. Petersburg Pasteur Institute

Email: vgdedkov@yandex.ru

PhD (Medicine), Deputy Director for Scientific Work, St. Petersburg Pasteur Institute.

197101, St. Petersburg, Mira str., 14.

Russian Federation

References

  1. Дятлов И.А. Возможности использования CRISPR-Cas-системы для диагностических целей в медицинской микробиологии // Бактериология. 2017. Т. 2, № 4. С. 5–6.
  2. Тюменцев А.И., Тюменцева М.А. CRISPR нуклеазы // Генетические технологии / Ю.В. Михайлова, А.М. Нагорных, В.В. Петров, А.Е. Судьина, А.И. Тюменцев, М.А. Тюменцева, А.А. Шеленков; под ред. В.Г. Акимкина. М.: ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, 2020. С. 63–85.
  3. Патент № 2707542 Российская Федерация, МПК C12N 9/22, C12N 15/09, C12P 21/02, C07K 1/18, C07K 1/32, C07K 1/36 (2019.08). Способ получения препарата рекомбинантной нуклеазы CAS, по существу, свободного от бактериальных эндотоксинов, полученный данным способом препарат и содержащий его набор для использования в системе CRISPR/Cas. № 2019109018; заявлено 2019.03.28: опубликовано 2019.11.27 / Акимкин В.Г., Тюменцев А.И., Тюменцева М.А., Шагин Д.А. Патентообладатель: ФБУН ЦНИИ эпидемиологии Роспотребнадзора. 131 с.
  4. Патент № 2747820 Российская Федерация, МПК C12Q 1/6816, C12N 9/22, C12N 15/113 (2021.02). Система CRISPR-Cas для выявления ДНК вируса Джона Каннингема (JCPyV) в ультранизких концентрациях. № 2020139162; заявлено 2020.11.30: опубликовано 2021.05.14 / Тюменцев А.И., Тюменцева М.А., Акимкин В.Г. Патентообладатель: ФБУН ЦНИИ эпидемиологии Роспотребнадзора. 21 с.
  5. Ackerman C.M., Myhrvold C., Thakku S.G., Freije C.A., Metsky H.C., Yang D.K., Ye S.H., Boehm C.K., Kosoko-Thoroddsen T.S.F., Kehe J., Nguyen T.G., Carter A., Kulesa A., Barnes J.R., Dugan V.G., Hung D.T., Blainey P.C., Sabeti P.C. Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, vol. 582, no. 7811, pp. 277–282. doi: 10.1038/s41586-020-2279-8
  6. Agarwal N., Gupta R. History, evolution and classification of CRISPR-Cas associated systems. Prog. Mol. Biol. Transl. Sci., 2021, vol. 179, pp. 11–76. doi: 10.1016/bs.pmbts.2020.12.012
  7. Anders C., Niewoehner O., Duerst A., Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, vol. 513, no. 7519, pp. 569–573. doi: 10.1038/nature13579
  8. Aquino-Jarquin G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomed.: Nanotechnol. Biol. Med., 2019, vol. 18, pp. 428–431. doi: 10.1016/j.nano.2019.03.006
  9. Arizti-Sanz J., Freije C.A., Stanton A.C., Petros B.A., Boehm C.K., Siddiqui S., Shaw B.M., Adams G., Kosoko-Thoroddsen T.S.F., Kemball M.E., Uwanibe J.N., Ajogbasile F.V., Eromon P.E., Gross R., Wronka L., Caviness K., Hensley L.E., Bergman N.H., MacInnis B.L., Myhrvold C. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications, 2020, vol. 11, no. 1: 5921. doi: 10.1038/s41467-020-19097-x
  10. Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biology, 2015, vol. 16, no. 1: 247. doi: 10.1186/s13059-015-0816-9
  11. Bauer D.E., Canver M.C., Orkin S.H. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J. Vis. Exp., 2015, vol. 95: e52118. doi: 10.3791/52118
  12. Bonini A., Poma N., Vivaldi F., Kirchhain A., Salvo P., Bottai D., Tavanti A., Di Francesco F. Advances in biosensing: the CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. J. Pharm. Biomed., 2021, vol. 192: 113645. doi: 10.1016/j.jpba.2020.113645
  13. Cofsky J.C., Karandur D., Huang C.J., Witte I.P., Kuriyan J., Doudna J.A. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. ELife, 2020, vol. 9: e55143. doi: 10.7554/eLife.55143
  14. Dai Y., Somoza R.A., Wang L., Welter J.F., Li Y., Caplan A.I., Liu C.C. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed., 2019, vol. 58, no. 48, pp. 17399–17405. doi: 10.1002/anie.201910772
  15. Gootenberg J.S., Abudayyeh O.O., Kellner M.J., Joung J., Collins J.J., Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science, 2018, vol. 360, no. 6387, pp. 439–444. doi: 10.1126/science.aaq0179
  16. Hajian R., Balderston S., Tran T., DeBoer T., Etienne J., Sandhu M., Wauford N.A., Chung J.Y., Nokes J., Athaiya M., Paredes J., Peytavi R., Goldsmith B., Murthy N., Conboy I.M., Aran K. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng., 2019, vol. 3, no. 6, pp. 427–437. doi: 10.1038/s41551-019-0371-x
  17. Harrington L.B., Burstein D., Chen J.S., Paez-Espino D., Ma E., Witte I.P., Cofsky J.C., Kyrpides N.C., Banfield J.F., Doudna J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, vol. 362, no. 6416, pp. 839– 842. doi: 10.1126/science.aav4294
  18. Horvath P., Barrangou R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science, 2010, vol. 327, no. 5962, pp. 167– 170. doi: 10.1126/science.1179555
  19. Ishino Y., Krupovic M., Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. Bacteriol., 2018, vol. 200, no. 7: e00580-17. doi: 10.1128/JB.00580-17
  20. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakatura A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, vol. 169, no. 12, pp. 5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987
  21. Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol., 2015, vol. 81, no. 7, pp. 2506–2514. doi: 10.1128/AEM.04023-14
  22. Joung J., Ladha A., Saito M., Kim N.-G., Woolley A.E., Segel M., Barretto R.P.J., Ranu A., Macrae R.K., Faure G., Ioannidi E.I., Krajeski R.N., Bruneau R., Huang M.-L.W., Yu X.G., Li J.Z., Walker B.D., Hung D.T., Greninger A.L., Zhang F. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N. Engl. J. Med., 2020, vol. 383, no. 15, pp. 1492–1494. doi: 10.1056/nejmc2026172
  23. Kaminski M.M., Abudayyeh O.O., Gootenberg J.S., Zhang F., Collins J.J. CRISPR-based diagnostics. Nat. Biomed. Eng., 2021, vol. 5, no. 7, pp. 643–656. doi: 10.1038/s41551-021-00760-7
  24. Kellner M.J., Koob J.G., Gootenberg J.S., Abudayyeh O.O., Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc., 2019, vol. 14, no. 10, pp. 2986–3012. doi: 10.1038/s41596-019-0210-2
  25. Kim S., Ji S., Koh H.R. Crispr as a diagnostic tool. Biomolecules, 2021, vol. 11, no. 8: 1162. doi: 10.3390/biom11081162
  26. Koonin E.V., Makarova K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2019, vol. 374, no. 1772: 20180087. doi: 10.1098/rstb.2018.0087
  27. Lau A., Ren C., Lee L.P. Critical review on where CRISPR meets molecular diagnostics. Progress in Biomedical Engineering, 2020, vol. 3, no 1: 012001. doi: 10.1088/2516-1091/abbf5e
  28. Lee R.A., De Puig H., Nguyen P.Q., Angenent-Mari N.M., Donghia N.M., McGee J.P., Dvorin J.D., Klapperich C.M., Pollock N.R., Collins J.J. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 41, pp. 25722–25731. doi: 10.1073/pnas.2010196117
  29. Li C.L., Hor L.I., Chang Z.F., Tsai L.C., Yang W.Z., Yuan H.S. DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. EMBO Journal, 2003, vol. 22, no. 15, pp. 4014–4025. doi: 10.1093/emboj/cdg377
  30. Li S.Y., Cheng Q.X., Li X.Y., Zhang Z.L., Gao S., Cao R.B., Zhao G.P., Wang J., Wang J.M. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discovery, 2018, vol. 4: 20. doi: 10.1038/s41421-018-0028-z
  31. Li Y., Li S., Wang J., Liu G. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol., 2019, vol. 37, no. 7, pp. 730–743. doi: 10.1016/j.tibtech.2018.12.005
  32. Li Z., Zhang H., Xiao R., Han R., Chang L. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nat. Chem. Biol., 2021, vol. 17, no. 4, pp. 387–393. doi: 10.1038/s41589-020-00721-2
  33. Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Terns R.M., Terns M.P., White M.F., Yakunin A.F., Garrett R.A., Van Der Oost J., Koonin E.V. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol., 2015, vol. 13, no. 11, pp. 722–736. doi: 10.1038/nrmicro3569
  34. Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Scott D., Shah S.A., Siksnys V., Terns M.P., Venclovas Č., White M.F., Yakunin A.F., Yan W., Zhang F., Garrett R.A., Backofen R., van der Oost J., Barrangou R., Koonin E.V. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol., 2020, vol. 18, no. 2, pp. 67–83. doi: 10.1038/s41579-019-0299-x
  35. Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G.A., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J.A., Daran J.M.G. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res., 2015, vol. 15, no. 2: fov004. doi: 10.1093/femsyr/fov004
  36. Marraffini L.A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, vol. 526, no. 7571, pp. 55–61. doi: 10.1038/nature15386
  37. Mustafa M.I., Makhawi A.M. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases and cancer-associated mutations. Preprints, 2020, 2020040080. doi: 10.20944/preprints202004.0080.v1
  38. Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A., Garcia K.F., Barnes K.G., Chak B., Mondini A., Nogueira M.L., Isern S., Michael S.F., Lorenzana I., Yozwiak N.L., MacInnis B.L., Bosch I., Gehrke L., Zhang F., Sabeti P.C. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, vol. 360, no. 6387, pp. 444–448. doi: 10.1126/science.aas8836
  39. Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, vol. 156, no. 5, pp. 935–949. doi: 10.1016/j.cell.2014.02.001
  40. Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. DNA detection using recombination proteins. PLoS Biology, 2006, vol. 4, no. 7, pp. 1115–1121. doi: 10.1371/journal.pbio.0040204
  41. Pinilla-Redondo R., Mayo-Muñoz D., Russel J., Garrett R.A., Randau L., Sørensen S.J., Shah S.A. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res., 2020, vol. 48, no. 4, pp. 2000–2012. doi: 10.1093/nar/gkz1197
  42. Quan J., Langelier C., Kuchta A., Batson J., Teyssier N., Lyden A., Caldera S., McGeever A., Dimitrov B., King R., Wilheim J., Murphy M., Ares L.P., Travisano K.A., Sit R., Amato R., Mumbengegwi D.R., Smith J.L., Bennett A., Gosling R., Mourani P.M., Calfee C.S., Neff N.F., Chow E.D., Kim P.S., Greenhouse B., DeRisi J.L., Crawford E.D. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res., 2019, vol. 47, no. 14: e83. doi: 10.1093/nar/gkz418
  43. Shen J., Zhou X., Shan Y., Yue H., Huang R., Hu J., Xing D. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat. Commun., 2020, vol. 11: 267. doi: 10.1038/s41467-019-14135-9
  44. Shmakov S., Smargon A., Scott D., Cox D., Pyzocha N., Yan W., Abudayyeh O.O., Gootenberg J.S., Makarova K.S., Wolf Y.I., Severinov K., Zhang F., Koonin E.V. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol., 2017, vol. 15, no. 3, pp. 169–182. doi: 10.1038/nrmicro.2016.184
  45. Sontheimer E.J., Barrangou R. The bacterial origins of the CRISPR genome-editing revolution. HGT, 2015, vol. 26, no. 7, pp. 413–424. doi: 10.1089/hum.2015.091
  46. Teng F., Guo L., Cui T., Wang X.G., Xu K., Gao Q., Zhou Q., Li W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol., 2019, vol. 20, no. 1: 132. doi: 10.1186/s13059-019-1742-z
  47. Varble A., Marraffini L.A. Three New C’s for CRISPR: collateral, communicate, cooperate. Trends Genet., 2019, vol. 35, no. 6, pp. 446–456. doi: 10.1016/j.tig.2019.03.009
  48. Wang M., Zhang R., Li J. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens. Bioelectron., 2020, vol. 165: 112430. doi: 10.1016/j.bios.2020.112430
  49. Wang T., Liu Y., Sun H.H., Yin B.C., Ye B.C. An RNA-Guided Cas9 nickase-based method for universal isothermal DNA amplification. Angew. Chem. Int. Ed., 2019, vol. 58, no. 16, pp. 5382–5386. doi: 10.1002/anie.201901292
  50. Yan F., Wang W., Zhang J. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol. Toxicol., 2019, vol. 35, no. 6, pp. 489–492. doi: 10.1007/s10565-019-09489-1
  51. Zhang J., Lv H., Li L., Chen M., Gu D., Wang J., Xu Y. Recent improvements in CRISPR-based amplification-free pathogen detection. Front. Microbiol., 2021, vol. 12: 751408. doi: 10.3389/fmicb.2021.751408
  52. Zhang Y., Zhang C.Y. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Analytical Chemistry, 2012, vol. 84, no. 1, pp. 224–231. doi: 10.1021/ac202405q
  53. Zhou T., Huang R., Huang M., Shen J., Shan Y., Xing D. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Advanced Science, 2020, vol. 7, no. 13: 1903661. doi: 10.1002/advs.201903661
  54. Zhou W., Hu L., Ying L., Zhao Z., Chu P.K., Yu X.F. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun., 2018, vol. 9, no. 1: 5012. doi: 10.1038/s41467-018-07324-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Volkov A.A., Dolgova A.S., Dedkov V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies