ASSESSMENT OF THE ABILITY OF SARS-COV-2 STRAINS OF GENETIC VARIANTS B.1.1 AND JN.1 TO EVADE NEUTRALIZING ANTIBODIES FROM 2020 AND 2023 CONVALESCENT PATIENTS



Cite item

Full Text

Abstract

Abstract

Introduction. The SARS-CoV-2 virus is a highly variable pathogen accounted for by random mutations leading to the emergence of new genetic variants. Natural selection of SARS-CoV-2 variants is, among other things, the result of population level immunity impact. To predict the effectiveness of counteracting COVID-19 spread, it is necessary to study a potential for human immunity pre-formed against current virus strains to resist SARS-CoV-2 variants of concern for assessing ability of new genetic variants to escape the neutralizing antibodies to previously circulating variants pressure. The aim of the study was to compare neutralizing antibody titers in 2020 and 2023 COVID-19 convalescent patients to SARS-CoV-2 B.1.1 and JN.1 genetic variants strains. Materials and methods. Blood sera from 76 and 68 convalescent subjects, respectively, for 2020- and 2023-years samples were collected and stored at minus 70 ℃ until used. The antibody titer was measured by neutralizing virus cytopathic effect in sensitive monolayer cell culture using test serum. The neutralizing activity of the sera was analyzed for two variants of SARS-CoV-2 VOC, Wuhan and Omicron. The statistical significance of the difference in antibody titers was assessed using the F-test; the difference was considered significant at p < 0.01. Results. The differences in neutralizing titer levels were significant between all four samples: 2020 sera against JN.1, 2023 sera against JN.1, 2020 sera against B.1.1, and 2023 sera against B.1.1. Conclusions. Antigenic changes allow the current JN.1 variant to evade the effects of neutralizing antibodies developed against strains of previous genetic variants in some cases. The 2023 samples showed higher antibody titers in neutralizing strains of the old genetic variant B.1.1 due to repeated stimulation during vaccinations and reinfection. Spontaneous mutations being not crucial did not lead to changes in antigenic determinants critical for virus neutralization. Repeated contacts with altered genetic variants of SARS-CoV-2 increased protection against its parental wild type.

About the authors

Stepan Alexandrovich Pyankov

Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Author for correspondence.
Email: pyanstep@gmail.com
ORCID iD: 0000-0002-6593-6614

Leading Researcher, Department Collection of Microorganisms

Россия, 630559, Koltsovo, Novosibirsk region, Russian Federation

Anna Vladimirovna Zaykovskaya

Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: zaykovskaya_av@vector.nsc.ru
ORCID iD: 0000-0002-0450-5212

PhD (Biology), Senior Researcher, Department Collection of Microorganisms

Россия, 630559, Koltsovo, Novosibirsk region, Russian Federation

Anna Vyacheslavovna Rybel

Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: ann2539@yandex.ru
ORCID iD: 0009-0000-1111-9435

Junior Researcher, Department Collection of Microorganisms

Россия, 630559, Koltsovo, Novosibirsk region, Russian Federation

Sergey Alexandrovich Bodnev

Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: bodnev@vector.nsc.ru
ORCID iD: 0000-0003-0599-3817

PhD (Medicine), Leading Researcher, Department of Collection of Microorganisms

Россия, 630559, Koltsovo, Novosibirsk region, Russian Federation

Oleg Victorovich Pyankov

Federal Budgetary Research Institution «State Research Center of Virology and Biotechnology «Vector», Federal Service for Surveillance on Consumer Rights Protection and Human Well-being

Email: pyankov@vector.nsc.ru
ORCID iD: 0000-0003-3340-8750

PhD (Biology), Leading Researcher, Department of Collection of Microorganisms

Россия, 630559, Koltsovo, Novosibirsk region, Russian Federation

References

  1. Зайковская А.В., Евсеенко В.А., Олькин С.Е., Пьянков О.В. Изучение антигенных свойств штаммов коронавируса SARS-CoV-2, выделенных на территории РФ В 2020–2022 гг., в реакции нейтрализации с использованием гипериммунных сывороток мышей. Инфекция и иммунитет. 2023, Т. 13, № 1, с. 37–45. Zaykovskaya A.V., Evseenko V.A., Olkin S.E., Pyankov O.V. Investigating antigenic features of the SARS-CoV-2 isolated in Russian Federation in 2021–2022 by hyperimmune mouse serum neutralization. Russian Journal of Infection and Immunity = Infektsiya i immunitet. 2023, vol. 13, no. 1, pp. 37–45. doi: 10.15789/2220-7619-IAF-1998
  2. Зайковская А.В., Евсеенко В.А., Олькин С.Е., Пьянков О.В. Изучение антигенных свойств штаммов коронавируса SARS-CoV-2, относящихся к разным сублиниям Омикрон-варианта, в реакции нейтрализации с использованием гипериммунных сывороток мышей // Инфекция и иммунитет. 2024. Т. 14, № 5. C. 881–890. Zaykovskaya A.V., Evseenko V.A., Olkin S.E., Pyankov O.V. Antigenic features of the strains SARS-CoV-2 of omicron sublines assessed by hyperimmune mouse serum neutralization. Russian Journal of Infection and Immunity = Infektsiya i mmunitet. 2024, vol. 14, no. 5, pp. 881–890. doi: 10.15789/2220-7619-AFO-17591
  3. Brangel P., Tureli S., Mühlemann B., Liechti N., Zysset D., Engler O., Hunger-Glaser I., Ghiga I., Mattiuzzo G., Eckerle I., Bekliz M., Rössler A., Schmitt M.M., Knabl L., Kimpel J., Tort L.F.L., de Araujo M.F., de Oliveira A.C.A., Caetano B.C., Siqueira M.M., Budt M., Gensch J.M., Wolff T., Hassan T., Selvaraj F.A., Hermanus T., Kgagudi P., Crowther C., Richardson S.I., Bhiman J.N., Moore P.L., Cheng S.M.S., Li J.K.C., Poon L.L.M., Peiris M., Corman V.M., Drosten C., Lai L., Hunsawong T., Rungrojcharoenkit K., Lohachanakul J., Sigal A., Khan K., Thiel V., Barut G.T., Ebert N., Mykytyn A.Z., Owusu Donkor I., Aboagye J.O., Nartey P.A., Van Kerkhove M.D., Cunningham J., Haagmans B.L., Suthar M.S., Smith D., Subissi L. A Global Collaborative Comparison of SARS-CoV-2 Antigenicity Across 15 Laboratories. Viruses, 2024, vol. 18, no. 16(12), p. 1936. doi: 10.3390/v16121936. PMID: 39772242; PMCID: PMC11680265.
  4. Geurtsvan Kessel C.H., Geers D., Schmitz K.S., Mykytyn A.Z., Lamers M.M., Bogers S., Scherbeijn S., Gommers L., Sablerolles R.S.G., Nieuwkoop N.N., Rijsbergen L.C., van Dijk L.L.A., de Wilde J., Alblas K., Breugem T.I., Rijnders B.J.A., de Jager H., Weiskopf D., van der Kuy P.H.M., Sette A., Koopmans M.P.G., Grifoni A., Haagmans B.L., de Vries R.D. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci Immunol., 2022, vol. 25, no. 7(69), p. 2202. doi: 10.1126/sciimmunol.abo2202. Epub 2022 Mar 25. PMID: 35113647; PMCID: PMC8939771
  5. Jassat W., Abdool Karim S.S., Mudara C., Welch R., Ozougwu L., Groome M.J., Govender N., von Gottberg A., Wolter N., Wolmarans M., Rousseau P., DATCOV author group, Blumberg L., Cohen C. Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study. Lancet Glob Health, 2022, no. 10(7), pp. 961-969. doi: 10.1016/S2214-109X(22)00114-0. Epub 2022 May 18. PMID: 35597249; PMCID: PMC9116895.
  6. Karim S.S.A., Karim Q.A. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic. Lancet, 2021, vol. 11, no. 398(10317), pp. 2126-2128. doi: 10.1016/S0140-6736(21)02758-6. PMID: 34871545; PMCID: PMC8640673.
  7. Khoury D.S., Cromer D., Reynaldi A., Schlub T.E., Wheatley A.K., Juno J.A., Subbarao K., Kent S.J., Triccas J.A., Davenport M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med., 2021, no. 27(7), pp. 1205-1211. doi: 10.1038/s41591-021-01377-8. PMID: 34002089.
  8. Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023 Jun;21(6):361-379. doi: 10.1038/s41579-023-00878-2. Epub 2023 Apr 5. PMID: 37020110.
  9. Mazzotti L., Borges de Souza P., Azzali I., Angeli D., Nanni O., Sambri V., Semprini S., Bravaccini S., Cerchione C., Gaimari A., Nicolini F., Ancarani V., Martinelli G., Pasetto A., Calderon H., Juan M., Mazza M. Exploring the Relationship Between Humoral and Cellular T Cell Responses Against SARS-CoV-2 in Exposed Individuals From Emilia Romagna Region and COVID-19 Severity. HLA, 2025, no. 105(1), pp. 70011. doi: 10.1111/tan.70011. PMID: 39807702; PMCID: PMC11731316.
  10. Pons S., Uhel F., Frapy E., Sérémé Y., Zafrani L., Aschard H., Skurnik D. How Protective are Antibodies to SARS-CoV-2, the Main Weapon of the B-Cell Response? Stem Cell Rev Rep., 2023, no.19(3), pp. 585-600. doi: 10.1007/s12015-022-10477-y. PMID: 36422774; PMCID: PMC9685122.
  11. Sievers C., Zacher B., Ullrich A., Huska M., Fuchs S., Buda S., Haas W., Diercke M., An der Heiden M., Kröger S. SARS-CoV-2 Omicron variants BA.1 and BA.2 both show similarly reduced disease severity of COVID-19 compared to Delta, Germany, 2021 to 2022. Euro Surveill., 2022, no. 27(22), pp. 2200396. doi: 10.2807/1560-7917.ES.2022.27.22.2200396. PMID: 35656831; PMCID: PMC9164675.
  12. Stephenson E., Reynolds G., Botting R.A., Calero-Nieto F.J., Morgan M.D., Tuong Z.K., Bach K., Sungnak W., Worlock K.B., Yoshida M., Kumasaka N., Kania K., Engelbert J., Olabi B., Spegarova J.S., Wilson N.K., Mende N., Jardine L., Gardner L.C.S., Goh I., Horsfall D., McGrath J., Webb S., Mather M.W., Lindeboom R.G.H., Dann E., Huang N., Polanski K., Prigmore E., Gothe F., Scott J., Payne R.P., Baker K.F., Hanrath A.T., Schim van der Loeff I.C.D., Barr A.S., Sanchez-Gonzalez A., Bergamaschi L., Mescia F., Barnes J.L., Kilich E., de Wilton A., Saigal A., Saleh A., Janes S.M., Smith C.M., Gopee N., Wilson C., Coupland P., Coxhead J.M., Kiselev V.Y., van Dongen S., Bacardit J., King H.W., Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID-19 BioResource Collaboration, Rostron A.J., Simpson A.J., Hambleton S., Laurenti E., Lyons P.A., Meyer K.B., Nikolić M.Z., Duncan C.J.A., Smith K.G.C., Teichmann S.A., Clatworthy M.R., Marioni J.C., Göttgens B., Haniffa M. Single-cell multi-omics analysis of the immune response in COVID-19. Nat Med., 2021, no. 27(5), pp. 904-916. doi: 10.1038/s41591-021-01329-2. PMID: 33879890; PMCID: PMC8121667.
  13. Strong MJ. SARS-CoV-2, aging, and Post-COVID-19 neurodegeneration. J Neurochem., 2023, no. 165(2), pp. 115-130. doi: 10.1111/jnc.15736. PMID: 36458986; PMCID: PMC9877664.
  14. Trimbake D., Singh D., K Y.G., Babar P., S V.D., Tripathy A.S. Durability of Functional SARS-CoV-2-Specific Immunological Memory and T Cell Response up to 8-9 Months Postrecovery From COVID-19. J Immunol Res., 2025, no. 10, p. 2025:9743866. doi: 10.1155/jimr/9743866. PMID: 39963186; PMCID: PMC11832264
  15. WHO. Enhancing Readiness for Omicron (B.1.1.529): Technical Brief and Priority Actions for Member States. 2021, accessed on 03 March 2025. Available online: https://www.who.int/docs/default-source/coronaviruse/2021-12-17-technical-brief-and-priority-action-on-omicron-en.pdf
  16. WHO. World Health Organization COVID-19 Epidemiological Update - 13 February 2025. Edition 176, Emergency Situational Updates. 2025, accessed on 03 March 2025. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-176
  17. Yuan M., Wilson I.A. Structural Immunology of SARS-CoV-2. Immunol Rev., 2025, no. 329(1), p. 13431. doi: 10.1111/imr.13431. PMID: 39731211; PMCID: PMC11727448
  18. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, no. 588(7836), p. 6. PMID: 33199918; PMCID: PMC9744119. doi: 10.1038/s41586-020-2012-7.
  19. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W., China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med., 2020, no. 382(8), pp. 727-733. doi: 10.1056/NEJMoa2001017. PMID: 31978945; PMCID: PMC7092803

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Pyankov S.A., Zaykovskaya A.V., Rybel A.V., Bodnev S.A., Pyankov O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies