COMPARATIVELY ASSESSED BIOLOGICAL MODELS FOR DETERMINING THE PATHOGENIC PROPERTIES OF CERTAIN PATHOGENS CAUSING COMMUNITY-ACQUIRED PNEUMONIA
- Authors: Anisimova A.1, Aronova N.V.1, Tsimbalistova M.V.1, Pavlovich N.V.1, Levchenko A.S.1
-
Affiliations:
- Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
- Section: ORIGINAL ARTICLES
- Submitted: 28.03.2025
- Accepted: 30.06.2025
- URL: https://iimmun.ru/iimm/article/view/17905
- DOI: https://doi.org/10.15789/2220-7619-CAB-17905
- ID: 17905
Cite item
Full Text
Abstract
Abstract
In recent years, it has been of interest to search for alternative, so-called surrogate models to investigate bacterial pathogenicity. The current work was aimed at comparing two biological models (using white mice and Galleria mellonella larvae) to evaluate the pathogenic potential of community-acquired pneumonia agents. All the studied strains were isolated from the sputum of patients at the Rostov-on-Don Anti–Plague Institute of Rospotrebnadzor and identified by time-of-flight mass spectrometry. The virulence of the pathogen strains was evaluated when white mice and G. mellonella larvae were experimentally infected by microbes at various doses (CFU/ml). It was found that the hypermucoid variant of Klebsiella pneumoniae caused death of white mice at a dose of <103 CFU/mouse, whereas the classical morphotype was apathogenic even at a dose of 106 CFU/mouse. At the same time, when the larvae were infected with two morphotypes, no difference in pathogenicity was observed. Other clinical isolates of the Enterobacteriacea family caused no disease in white mice even at an infection dose of 106 CFU/mouse. However, E. coli and E. kobei caused the lethal process in (90%) in G. mellonella larvae. The exception was E. cloacae, which caused death in as few as 10% of individuals. In contrast to white mice, 100% of larvae died upon infection with Stenotrophomonas maltophilia, Chryseobacterium gleum, Rhizobium radiobacter, and Pantoea agglomerans. The virulence study of different staphylococcal species showed that S. aureus and S. haemolyticus had a high pathogenic potential for larvae, whereas S. epidermidis and S. saprophyticus were characterized by significantly lower potential to cause infection. In the surrogate model, clinical isolates of various fungal species: C. albicans, C. tropicalis, and G. capitatum – were most pathogenic for larvae, whereas C. glabrata and C. krusei, known as most invasive species, caused the delayed death of several individuals. Thus, the pathogenicity study of various microbial species requires to choose most appropriate biological model.
About the authors
Anastasia Anisimova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: anisimova_as@antiplague.ru
SPIN-code: 6408-6399
Junior Researcher at the Laboratory of Natural Focal and Zoonotic Infections
Россия, 344002, Rostov-on-Don, M. Gorky str., 117/40Nadezhda Valentinovna Aronova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: aronova_nv@antiplague.ru
ORCID iD: 0000-0002-7772-9276
SPIN-code: 6471-8064
Candidate of Biological Sciences, Leading Researcher at the Laboratory of Natural Focal and Zoonotic Infections
Россия, 344002, Rostov-on-Don, M. Gorky str., 117/40Marina Viktorovna Tsimbalistova
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: tsimbalistova_mv@antiplague.ru
SPIN-code: 9618-4261
Candidate of Medical Sciences, Senior Researcher at the Laboratory of Natural Focal and Zoonotic Infections
Россия, 344002, Rostov-on-Don, M. Gorky str., 117/40Natalia Vladimirovna Pavlovich
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Author for correspondence.
Email: pavlovich_nv@antiplague.ru
SPIN-code: 2317-9985
Scopus Author ID: 7004882423
Doctor of Medical Sciences, Chief Researcher, Acting Head of the Department of Natural Focal and Zoonotic Infections
Россия, 344002, Rostov-on-Don, M. Gorky str., 117/40Anastasia Svyatoslavovna Levchenko
Rostov-on-Don Anti-Plague Institute of Rospotrebnadzor
Email: levchenko_as@antiplague.ru
Head of the nursery (vivarium)
Россия, 344002, Rostov-on-Don, M. Gorky str., 117/40References
- Анисимова А.С., Полеева М.В., Аронова Н.В., Цимбалистова М.В., Павлович Н.В. Oсобенности идентификации грибов рода Candida с помощью масс-спектрометрического анализа (MALDI-ToF MS) // Клиническая лабораторная диагностика. 2022. Т. 67, № 4. С. 244-249. Anisimova A.S., Poleeva M.V., Aronova N.V., Tsimbalistova M.V., Pavlovich N.V. Pecularities of Candida yeast identification by mass spectrometric analysis (MALDI-ToF MS). Klinicheskaya Laboratornaya Diagnostika (Russian Clinical
- Laboratory Diagnostics). 2022; 67 (4): 244-249 (in Russ.) DOI: https://dx.doi.org/10.51620/0869-2084-2022-67-4-244-249
- Анисимова А.С., Павлович Н.В., Аронова Н.В., Цимбалистова М.В., Гудуева Е.Н., Пасюкова Н.И., Теплякова Е.Д., Носков А.К. Биологические свойства и антибиотикорезистентность Klebsiella pneumoniae и её роль в этиологической структуре возбудителей внебольничных пневмоний // Антибиотики и Химиотерапия. 2023. Т. 68, № 5-6. С. 11-18. Anisimova A. S., Pavlovich N. V., Aronova N. V., Tsimbalistova M. V., Gudueva E. N., Pasyukova N. I., Teplyakova E. D., Noskov A. K. Biological properties and antibiotic resistance of Klebsiella pneumoniae and its role in the etiological structure of community-acquired pneumonia pathogens. Antibiotiki i Khimioter = Antibiotics and Chemotherapy. 2023; 68 (5–6): 11–18. DOI: https://doi.org/10.37489/0235-2990-2023-68-5-6-11-18
- Аронова Н.В., Павлович Н.В., Цимбалистова М.В., Полеева М.В., Анисимова А.С., Водопьянов С.О., Носков А.К. Видовое разнообразие и маркеры резистентности дрожжей рода Candida у коронапозитивных и коронанегативных больных с внебольничными пневмониями // Антибиотики и Химиотерапия. 2021. Т. 66, № 7-8. С. 38-44. Aronova N.V., Pavlovich N.V., Tsymbalistova M.V., Poleeva M.V., Anisimova A.S., Vodopyanov S.O., Noskov A.K. Species Diversity And Resistance Markers of Candida Yeasts In COVID Positive and COVID Negative Patients With Community-Acquired Pneumonia. Antibiot Khimioter = Antibiotics and Chemotherapy. 2021; 66(7-8):38-44. (In Russ.) DOI: https://doi.org/10.37489/0235-2990-2021-66-7-8-38-44
- Большая российская энциклопедия https://bigenc.ru/c/patogennost-b0e100
- Гланц С. Медико-биологическая статистика. Пер. с англ. — М., Практика, 1998. — 459 с. Glants S.A. Medical and biological statistics. Translated from English. Moscow, Praktika, 1998. 459 p.
- Лабораторная диагностика внебольничных пневмоний: Методические указания МУК 4.2.3115-13. М. 2013. Laboratory diagnostics of community-acquired pneumonia: Methodological guidelines MUK 4.2.3115-13. Moscow, 2013.
- Лабораторная диагностика внебольничной пневмонии пневмококковой этиологии: Методические рекомендации МР 4.2.0114-16. М. 2016. Laboratory diagnostics of community-acquired pneumonia of pneumococcal etiology: Methodological recommendations MR 4.2.0114-16. Moscow, 2016.
- Салмова Ю.В., Никифорова Л.Р., Боровкова К.Е. Разработка модели бактериальной инфекции личинок Galleria mellonella (большая восковая моль // Лабораторные животные для научных исследований. 2022. Т. 3. С. 40–49. Salmova J.V., Nikiforova L.R., Borovkova К.E. Development of a bacterial infection model of Galleria mellonella larvae (greater wax moth). Laboratory Animals for Science. 2022; 3 40–49. DOI: https://doi.org/10.57034/2618723X-2022-03-05.
- Akinkunmi E.O., Adeyemi O.I., Igbeneghu O.A., Olaniyan E.O., Omonisi A.E., Lamikanra A. The pathogenicity of Staphylococcus epidermidis on the intestinal organs of rats and mice: an experimental investigation. BMC Gastroenterol., 2014, vol. 14, pp. 126. – doi: 10.1186/1471-230X-14-126
- Baumans V. Science-based assessment of animal welfare: laboratory animals. Rev. Sci. Tech., 2005, vol. 24, no. 2, pp. 503-13. – https://pubmed.ncbi.nlm.nih.gov/16358504/
- Champion O.L., Wagley S., Titball R.W. Galleria mellonella as a model host for microbiological and toxin research. Virulence, 2016, vol. 7, no. 7, pp. 840–845. – doi: 10.1080/21505594.2016.1203486
- Curtis A., Binder U., Kavanagh K. Galleria mellonella larvae as a model for investigating fungal-host interactions. Front. Fungal. Biol., 2022, vol. 3, pp. 893494. – doi: 10.3389/ffunb.2022.893494
- Cutuli M.A., Petronio P.G., Vergalito F., Magnifico I., Pietrangelo L., Venditti N., Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: new developments in antibacterial strategies and novel drug testing. Virulence, 2019, vol. 10, no. 1, pp. 527–541. – doi: 10.1080/21505594.2019.1621649
- Eisemann C.H., Jorgensen W.K., Merritt D.J., Rice M.J., Cribb B.W., Webb P.D., Zalucki M.P. Do insects feel pain? — A biological view. Experientia, 1984, vol. 40, pp. 164–167. – doi: 10.1007/BF01963580
- García-Lara J., Needham A. J., Foster S. J. Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host–pathogen interaction. FEMS. Immunol. Med. Microbiol., 2005, vol. 43, no. 3, pp. 311–323. – doi: 10.1016/j.femsim.2004.11.003
- Giammarino A., Bellucci N., Angiolella L. Galleria mellonella as a model for the study of fungal pathogens: advantages and disadvantages. Pathogens., 2024, vol. 13, no. 3, pp. 233. – doi: 10.3390/pathogens13030233
- Gunn B.A. Comparative virulence of human isolates of coagulase-negative staphylococci tested in an infant mouse weight retardation model. J. Clin. Microbiol., 1989, vol. 27, no. 3, pp. 507-511. – doi: 10.1128/jcm.27.3.507-511.1989
- Hassan Y., Chew S.Y., Than L.T.L. Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival. J. Fungi. (Basel)., 2021, vol. 7, no. 8, pp. 667. – doi: 10.3390/jof7080667
- Jamiu A.T., Albertyn J., Sebolai O.M., Pohl C.H. Update on Candida krusei, a potential multidrug-resistant pathogen. Med. Mycol., 2021, vol. 59, no. 1, pp. 14-30. – doi: 10.1093/mmy/myaa031
- Kavanagh K., Sheehan G. The use of Galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J. Fungi. (Basel), 2018, vol. 4, no. 3, pp. 113. – doi: 10.3390/jof4030113
- Lemaitre B., Hoffmann J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 2007, vol. 25, pp. 697-743. – doi: 10.1146/annurev.immunol.25.022106.141615.
- Liang H., Wang Y., Liu F., Duan G., Long J., Jin Y., Chen S., Yang H. The application of rat models in Staphylococcus aureus infections. Pathogens., 2024, vol. 13, no. 6, pp. 434. – doi: 10.3390/pathogens13060434
- Mai D., Wu A., Li R., Cai D., Tong H., Wang N., Tan J. Identification of hypervirulent Klebsiella pneumoniae based on biomarkers and Galleria mellonella infection model. BMC. Microbiol., 2023, vol. 23, no 1, pp. 369. – doi: 10.1186/s12866-023-03124-0
- Ménard G., Rouillon A., Cattoir V., Donnio P.Y. Galleria mellonella as a suitable model of bacterial infection: past, present and future. Front. Cell. Infect. Microbiol., 2021, no. 11, pp. 782733. – doi: 10.3389/fcimb.2021.782733
- Nathan S. New to Galleria Mellonella. Virulence, 2014, vol. 5, no. 3, pp. 371–374. – doi: 10.4161/viru.28338
- Pereira T.C., de Barros P.P., Fugisaki L.R.O., Rossoni R.D., Ribeiro F.C., de Menezes R.T., Junqueira J.C., Scorzoni L. Recent advances in the use of Galleria mellonella model to study immune responses against human pathogens. J. Fungi. (Basel), 2018, vol. 4, no. 4, pp. 128. – doi: 10.3390/jof4040128
- Pereira M.F., Rossi C.C., da Silva G.C., Rosa J.N., Bazzolli D.M.S. Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application. Pathog. Dis., 2020, vol. 78, no. 8, pp. ftaa056. – doi: 10.1093/femspd/ftaa056
- Qin M., Chen P., Deng B., He R., Wu Y., Yang Y., Deng W., Ding X., Yang F., Xie C., Yang Y., Tian G.B. The emergence of a multidrug-resistant and pathogenic ST42 lineage of Staphylococcus haemolyticus from a hospital in China. Microbiol. Spectr., 2022 , vol. 10, no. 3, pp. e0234221. – doi: 10.1128/spectrum.02342-21
- Richmond J. The 3rs - Past, Present and Future. Scand. J. Lab. Anim. Sci., 2000, vol. 27, no. 2, pp. 84–92. – doi: 10.23675/sjlas.v27i2.19
- Russell, W. M. S., Burch, R. L., & Hume, C. W. (1959). The principles of humane experimental technique (Vol. 238). London: Methuen – https://www.semanticscholar.org/paper/The-Principles-of-Humane-Experimental-Technique-Russell-Burch/7fe3176121a3885e484eb154c381139bc6c2312d
- Russo T.A., MacDonald U. The Galleria mellonella infection model does not accurately differentiate between hypervirulent and classical Klebsiella pneumoniae. mSphere., 2020, vol. 5, no. 1, pp. e00850-19. – doi: 10.1128/mSphere.00850-19
- Serrano I., Verdial C., Tavares L., Oliveira M. The virtuous Galleria mellonella model for scientific experimentation. Antibiotics (Basel), 2023, vol. 12, no. 3, pp. 505. – doi: 10.3390/antibiotics12030505
- Sheehan G., Garvey A., Croke M., Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences? Virulence, 2018, vol. 9, no. 1, pp. 1625-1639. – doi: 10.1080/21505594.2018.1526531
- Tannenbaum J., Bennett B.T. Russell and Burch's 3Rs then and now: the need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci., 2015, vol. 54, no. 2, pp. 120-132. – https://pmc.ncbi.nlm.nih.gov/articles/PMC4382615/
- Tsai C.J.-Y., Loh J.M.S., Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence, 2016, vol. 7, no. 3, pp. 214–229. – doi: 10.1080/21505594.2015.1135289
- Wojda I., Staniec B., Sułek M., Kordaczuk J. The greater wax moth Galleria mellonella: biology and use in immune studies. Pathog. Dis., 2020, vol. 78, no. 9, pp. ftaa057. – doi: 10.1093/femspd/ftaa057
Supplementary files
