PATHOGENESIS OF AUTOIMMUNE INFLAMMATION IN COVID-19: A LITERATURE REVIEW



Cite item

Full Text

Abstract

Abstract

The literature review examines the mechanisms underlying formation of autoantibodies to angiotensin converting enzyme (ACE) in COVID-19. The similarity of the autoimmune processes revealed in the new coronavirus infection and the inflammatory reactions previously studied in experimental models is shown. Plausible ways for developing neurodegenerative and rheumatic diseases and rheumatic diseases in patients after a new coronavirus infection are presented. The results of clinical studies have shown that COVID-19 convalescent patients often have serum antibodies to ACE type 2 (ACE2-specific antibodies), which are absent in non-COVID-19 apparently healthy individuals. The authors note that higher level of such antibodies was paralleled with more severe COVID-19. ACE2 is known to catalyze the degradation of angiotensin I and angiotensin, and also converts angiotensin II into angiotensin 1-7, which has vasodilating, anti-inflammatory, and antifibrotic effects. Accordingly, low ACE2 level along with anti-ACE2 antibodies imprints progression of inflammation and tissue fibrosis, which obviously markedly exacerbates the course of the infectious and inflammatory process and increases the severity of irreversible post-inflammatory changes. Intravenous administration of heterologous polyclonal antibodies against pulmonary ACE has been shown to cause acute fatal pulmonary edema. Autoantibodies to ACE2 cause a predisposition of patients with connective tissue diseases to constrictive vasculopathy, pulmonary arterial hypertension and persistent digital ischemia, which was noted in a number of patients with severe COVID-19. Thus, COVID-19 is a very complex process that involves not only classical infectious and inflammatory, but also autoimmune reactions in human body. COVID-19 severity depends on magnitude of internal organs and body systems impairment. Improper treatment can provoke or activate autoimmune processes, including rheumatic and neurodegenerative diseases, which should be taken into account when choosing treatment regimens, including cases of new SARS-CoV-2 variants. The information summarized in the literature review substantiates a need for using immunosuppressive therapy in case of deterioration in COVID-19 patients.

About the authors

Alexandr Valeryanovich Volkov

Federal Budgetary Scientific Institution "Moscow Research Institute of Epidemiology and Microbiology named after G.N. Gabrichevsky" of Rospotrebnadzor

Email: alecsandr414@mail.ru
ORCID iD: 0000-0001-8212-9251

Candidate of Medical Sciences, Leading Researcher at the Laboratory of Immunobiological Drugs

Россия, 10 Admiral Makarov str., Moscow, 125212, Russia

Tatiana Ruzhentsova

Federal Budgetary Scientific Institution "Moscow Research Institute of Epidemiology and Microbiology named after G.N. Gabrichevsky" of Rospotrebnadzor;
Moscow Medical University "Reaviz"

Author for correspondence.
Email: ruzhencova@gmail.com
ORCID iD: 0000-0002-6945-2019
SPIN-code: 3685-2618
Scopus Author ID: 57193900159

Dr. of Sci. (Med.), Deputy Director for Clinical Work,

Professor, Head of the Department of Internal Diseases

Россия, 10 Admiral Makarov str., Moscow, 125212, Russia 27, build. 2, Profsoyuznaya str., Moscow, 117418, Russia

References

  1. Купкенова Л.М., Шамсутдинова Н.Г., Одинцова А.Х., Черемина Н.А., Исхакова Д.Г., Абдулганиева Д.И. Постковидный синдром у пациентов с воспалительными заболеваниями кишечника // РМЖ. Медицинское обозрение. 2022. Т. 6, №5. С. 227-231. Kupkenova L.M., Shamsutdinova N.G., Odintsova A.Kh., Cheremina N.A., Iskhakova D.G., Abdulganieva D.I. Postcovid syndrome in patients with inflammatory bowel diseases. Russian Medical Inquiry, 2022, vol. 6, no. 5, pp. 227–231 https://doi.org/10.32364/2587-6821-2022-6-5-227-231.
  2. Руженцова Т.А., Горелов А.В. Значение острых респираторных вирусных инфекций в развитии хронической патологии сердца у детей // Эпидемиология и инфекционные болезни. 2012. № 3. С. 42-46. Ruzhentsova T.A., Gorelov A.V. The value of acute respiratory viral infections in the development of chronic heart failure disease in children. Epidemiology and infectious diseases, 2012, no. 3, pp. 42-46. https://doi.org/10.17816/EID40658.
  3. Руженцова Т.А., Плоскирева А.А., Горелов А.В. Осложнения ротавирусной инфекции у детей // Педиатрия. Журнал им. Г.Н. Сперанского. 2016. Т. 95, № 2. С. 38-43. Ruzhentsova T.A., Ploskireva A.A., Gorelov A.V. Complications of rotavirus infection in children pediatriya. Zhurnal im G.N. Speranskogo, 2016, vol. 95, no. 2, pp. 38-43. https://cyberleninka.ru/article/n/oslozhneniya-rotavirusnoy-infektsii-u-detey
  4. Руженцова Т.А., Плоскирева А.А., Щербаков И.Т., Исаева Е.И., Бондарева А.В., Горелов А.В. Поражения миокарда при Коксаки А вирусной инфекции // Фундаментальные исследования. 2015. № 1-5. С. 1033-1037. Ruzhentsova T.A., Ploskireva A.A., Shherbakov I.T., Isaeva E.I., Bondareva A.V., Gorelov A.V. Myocardial lesions in Coxsackie A virus infection. Fundamental Research, 2015, no. 1-5, pp. 1033-1037. https://s.fundamental-research.ru/pdf/2015/1-5/37511.pdf
  5. Arthur J.M., Forrest J.C., Boehme K.W. Kennedy J.L., Owens S., Herzog C., Liu J., Harville T.O. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLos One, 2021, vol. 16, no. 9, pp.: e0257016. - https://doi.org/10.1371/journal.pone.0257016.
  6. Barba L.M., Caldwell P.R. Downie G.H., Camussi G., Brentjens J.R., Andres G. Lung injury mediated by antibodies to endothelium. I. In the rabbit a repeated interaction of heterologous anti-angiotensin-converting enzyme antibodies with alveolar endothelium results in resistance to immune injury through antigenic modulation. J. Exp. Med., 1983, vol. 158, no. 6, pp. 2141-2158. - https://doi.org/10.1084/jem.158.6.2141.
  7. Caldwell P.R., Wigger H.J., Fernandez L.T., D'Alisa R.M., Tse-Eng D., Butler V.P. Jr, Gigli I. Lung injury induced by antibody fragments to angiotensin-converting enzyme. Am. J. Pathol., 1981, vol. 105, no. 1, pp. 54-63. - https://pubmed.ncbi.nlm.nih.gov/6271015/
  8. Camussi G., Biesecker G., Caldwell P.R., Biancone L., Andres G., Brentjens J.R. Role of the membrane attack complex of complement in lung injury mediated by antibodies to endothelium. Allergy Immunol., 1993, vol. 102, no. 3, pp. 216-223. - https://doi.org/10.1159/000236529.
  9. Camussi G., Pawlowski I., Bussolino F., Caldwell P.R., Brentjens J., Andres G. Release of platelet activating factor in rabbits with antibody-mediated injury of the lung: the role of leukocytes and of pulmonary endothelial cells. J. Immunol., 1983, vol. 131, no. 4, pp. 1802-1807. - https://pubmed.ncbi.nlm.nih.gov/6311899/
  10. Cantor J.O. CRC Handbook of Animal Models of Pulmonary Disease, Volume II. CRC Press, Inc., 1989, 266 р. - https://doi.org/10.1201/9781351070973.
  11. Chen Y., Huang D., Yuan W., Chang J., Yuan Z., Wu D., Han M., Luo X., Ning Q., Yan W. Lower Serum Angiotensin-Converting Enzyme Level in Relation to Hyperinflammation and Impaired Antiviral Immune Response Contributes to Progression of COVID-19 Infection. Infect Dis Ther., 2021, vol. 10, no. 4, pp. 2431–2446. - https://doi.org/10.1007/s40121-021-00513-8.
  12. Davalos D., Akassoglou K. Fibrinogen as a key regulator of inflammation in disease, Review. Semin Immunopathol., 2012, vol. 34, no. 1, pp. 43-62. - https://doi.org/10.1007/s00281-011-0290-8.
  13. Hosman I.S., Kos I., Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol., 2020, no. 11, p. 631299. - https://doi.org/10.3389/fimmu.2020.631299.
  14. Imai Y., Kuba K., Penninger J.M. The discovery of angiotensin‐converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol., 2008, vol. 93, no. 5, pp. 543–548. - https://doi.org/10.1113/expphysiol.2007.040048.
  15. Janciauskiene S. Acute Phase Proteins. London: IntechOpen, 2013, 190 р. - https://doi.org/10.5772/46063
  16. Kehoe P.G., Wong S., Al Mulhim N., Palmer L.E., Miners J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther., 2016, vol. 8, no. 1, p. 50. - https://doi.org/10.1186/s13195-016-0217-7.
  17. Labandeira C.M., Pedrosa M.A., Quijano A., Valenzuela R., Garrido-Gil P., Sanchez-Andrade M., Suarez-Quintanilla J.A., Rodriguez-Perez A.I., Labandeira-Garcia J.L. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson´s disease. NPJ Parkinsons Dis., 2022, vol. 8, no. 1, p. 76. - https://doi.org/10.1038/s41531-022-00340-9.
  18. Liu S. , Liu J., Miura Y., Tanabe C., Maeda T., Terayama Y., Turner A.J., Zou K., Komano H. Conversion of Aβ43 to Aβ40 by the successive action of angiotensin-converting enzyme 2 and angiotensin-converting enzyme. J. Neurosci Res., 2014, vol. 92, no. 9, pp. 1178-1186. - https://doi.org/10.1002/jnr.23404.
  19. Matsuo S., Caldwell P.R., Brentjens J.R., Andres G. In vivo interaction of antibodies with cell surface antigens. A mechanism responsible for in situ formation of immune deposits in the zona pellucida of rabbit oocytes. J. Clin. Invest., 1985, vol. 75, no. 4, pp. 1369-1380. - https://doi.org/10.1172/JCI111838.
  20. Matsuo S., Fukatsu A., Taub M.L., Caldwell P.R., Brentjens J.R., Andres G. Glomerulonephritis induced in the rabbit by antiendothelial antibodies. J. Clin. Invest., 1987, vol. 79, no. 6, pp. 1798–1811. - https://doi.org/10.1172/JCI113021
  21. McCormick J.R., Thrall R.S., Kerlin A., Ward P.A. In vitro and in vivo effects of antibody to rat angiotensin converting enzyme. Clinical Immunol. and Immunopathol., 1980, vol. 15, no. 3, pp. 444-455. - https://doi.org/10.1016/0090-1229(80)90056-2.
  22. McMillan Р., Dexhiemer Т., Neubig R.R., Uhal В.D. COVID-19 - A Theory of Autoimmunity Against ACE-2 Explained. Front Immunol., 2021, no. 12, p. 582166. - https://doi.org/10.3389/fimmu.2021.582166.
  23. McMillan Р., Uhal В.D. COVID-19 – A theory of autoimmunity to ACE-2. MOJ Immunol., 2020, vol. 7, no. 1, pp. 17–19. - https://pubmed.ncbi.nlm.nih.gov/32656314.
  24. Takahashi Y., Haga S., Ishizaka Y., Mimori A. Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Research & Therapy, 2010, vol. 12, no. 3, p. R85. - https://doi.org/10.1186 / ar3012.
  25. Thomas D.L. Immunoglobulin M ACE2 autoantibodies associated with severe COVID-19. News medical, 2020. - https://www.news-medical.net/news/20201019/Immunoglobulin-M-ACE2-autoantibodies-associated-with-severe-COVID-19.aspx.
  26. Townsend А. Autoimmunity to ACE2 as a possible cause of tissue inflammation in Covid-19. Medical Hypotheses, 2020, vol. 144, no. 13, pp. 110043. - https://doi.org/10.1016/j.mehy.2020.110043.
  27. Zou K., Yamaguchi H., Akatsu H., Sakamoto T., Ko M., Mizoguchi K., Gong J.S., Yu W., Yamamoto T., Kosaka K., Yanagisawa K., Michikawa M. Angiotensin-Converting Enzyme Converts Amyloid β-Protein 1–42 (Aβ1–42) to Aβ1–40, and Its Inhibition Enhances Brain Aβ Deposition. J. of Neuroscience, 2007, vol. 27, no. 32, pp. 8628-8635. - https://doi.org/ 10.1523/JNEUROSCI.1549-07.2007.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Volkov A.V., Ruzhentsova T.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies