DEVELOPMENT OF A REAL-TIME RT-PCR ASSAY FOR DETECTION OF HENDRA AND NIPAH VIRUSES



Cite item

Full Text

Abstract

Abstract

The article is devoted to the development of a method for detection of viral RNA of two highly pathogenic zoonotic viruses from the genus Henipavirus - Hendra and Nipah using real-time reverse transcription polymerase chain reaction. In the natural environment, these viruses are carried by flying foxes in the family Pteropodidae. Horses and pigs, respectively, are susceptible to infection. The diseases are also transmitted to humans through contact with sick animals, their biological excreta and from person to person. In infected humans and animals, clinical signs of infection may be asymptomatic, or may present with flu-like symptoms at the onset of the disease and progress to neurologic disease and acute respiratory infection, followed by death. In Australia, the subunit vaccine HeV-sG is used against Hendra virus in horses. There is no treatment or vaccine for Hendra or Nipah viruses for humans. The need to develop new detection methods and search for new viral targets remains an urgent task due to the large area of distribution of the described viruses, high contagiousness and mortality of animals and humans. The study describes the original designed primers and probes for conserved regions of the genomes of two viruses: the gene encoding the nucleocapsid protein of Hendra virus and the gene encoding the glycoprotein of Nipah virus. Synthetic controls for the extraction and reverse transcription PCR stages have been created, confirming the quality of the developed method. Biological samples from healthy people (blood plasma, swabs from oral and nasopharyngeal mucous membranes, cerebrospinal fluid) with the addition of artificial controls passed the stages of sample extraction and real-time reverse transcription PCR, thus confirming the quality of control samples. The detection limit of the described viral RNA identification methods was determined as 100 copies/mL for Hendra virus and 1000 copies/mL for Nipah virus. The amplification transit time is less than 90 minutes. The developed method will help in epidemiologic control of the spread of these infections, can be used in the diagnosis of Hendra and Nipah viruses and for solving research tasks to study the properties of these pathogens.

About the authors

Svetlana Alekseevna Shirobokova

Saint Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, St. Petersburg, Russia

Author for correspondence.
Email: schirobokova.s@gmail.com
ORCID iD: 0009-0001-8841-3744
SPIN-code: 8140-9620
Scopus Author ID: 58149564000
ResearcherId: NYS-8978-2025

Junior Researcher, Laboratory for Molecular Genetics of Pathogens, St. Petersburg Pasteur Institute

Россия, St. Petersburg, st. Mira, 14

Anna Vyacheslavovna Shabalina

Saint Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, St. Petersburg, Russia

Email: shabalina@pasteurorg.ru
ORCID iD: 0000-0003-2719-2666
SPIN-code: 5482-3179
Scopus Author ID: 58120138300

Junior Researcher, Laboratory for Molecular Genetics of Pathogens, St. Petersburg Pasteur Institute

Россия, St. Petersburg, st. Mira, 14

Igor Sergeevich Sukhikh

Saint Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, St. Petersburg, Russia

Email: igor3419@gmail.com
ORCID iD: 0000-0002-3548-4354
SPIN-code: 4439-7730
Scopus Author ID: 56465949700

PhD (Biology), Researcher, Laboratory for Molecular Genetics of Pathogens, St. Petersburg Pasteur Institute

Россия, St. Petersburg, st. Mira, 14

Vera Abdennaserovna Chayeb

Saint Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, St. Petersburg, Russia

Email: shaieb@pasteurorg.ru
ORCID iD: 0000-0002-8407-735X
Scopus Author ID: 57201977809C

PhD (Biology), Junior Researcher, Laboratory for Molecular Genetics of Pathogens, St. Petersburg Pasteur Institute

Россия, St. Petersburg, st. Mira, 14

Anna Sergeevna Dolgova

Saint Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, St. Petersburg, Russia

Email: dolgova@pasteurorg.ru
ORCID iD: 0000-0001-8730-4872
SPIN-code: 9410-2798
Scopus Author ID: 56530595700

PhD (Biology), Senior Researcher, Head of Laboratory for Molecular Genetics of Pathogens, St. Petersburg Pasteur Institute

Россия, St. Petersburg, st. Mira, 14

Vladimir Georgievich Dedkov

Saint Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, St. Petersburg, Russia;
Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia

Email: vgdedkov@yandex.ru
ORCID iD: 0000-0002-5500-0169

PhD (Medicine), Deputy Director for Scientific Work, St. Petersburg Pasteur Institute

Россия, St. Petersburg, st. Mira, 14

References

  1. Aljofan M. Hendra and Nipah infection: Emerging paramyxoviruses. Virus Research. Elsevier BV, 2013, vol. 177, no. 2, pp. 119–126. https://doi.org/10.1016/j.virusres.2013.08.002
  2. Annand E. J., Horsburgh B. A., Xu K., Reid P. A., Poole B., de Kantzow M. C., Brown N., Tweedie A., Michie M., Grewar J. D., Jackson A. E., Singanallur N. B., Plain K. M., Kim K., Tachedjian M., van der Heide B., Crameri S., Williams D. T., Secombe C., Laing E. D., Sterling S., Yan L., Jackson L., Jones C., Plowright R. K., Peel A. J., Breed A. C., Diallo I., Dhand N. K., Britton P. N., Broder C. C., Smith I., Eden J.-S. Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia. Emerging Infectious Diseases. Centers for Disease Control and Prevention (CDC), 2022, vol. 28, no. 3, pp. 693–704. https://doi.org/10.3201/eid2803.211245
  3. Askari M. R. A., Menezes G. A., Omran H. H., Ejaz A., Ejaz H., Hameed S. S. Nipah Virus: A Threatening Outbreak. Journal of clinical and diagnostic research. JCDR Research and Publications, 2023, vol. 17, no. 2. pp. DE01-DE07. https://doi.org/10.7860/jcdr/2023/52734.17504
  4. Bangladesh reports two Nipah deaths in 2024 to date [website on the Internet]. Available from https://open.substack.com/pub/outbreaknewstoday/p/bangladesh-reports-two-nipah-deaths?utm_campaign=post&utm_medium=web (Accessed September 7, 2024).
  5. Bossart K. N., Rockx B., Feldmann F., Brining D., Scott D., LaCasse R., Geisbert J. B., Feng Y.-R., Chan Y.-P., Hickey A. C., Broder C. C., Feldmann H., Geisbert T. W. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Science translational medicine. American Association for the Advancement of Science (AAAS), 2012, vol. 4, no. 146. https://doi.org/10.1126/scitranslmed.3004241
  6. Business Queensland. Summary of Hendra virus incidents in horses [website on the Internet]. Available from https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary (Accessed September 7, 2024)
  7. Chakraborty S., Deb B., Barbhuiya P. A., Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus. Virus Research. Elsevier BV, 2019, vol. 263, pp. 129–138. https://doi.org/10.1016/j.virusres.2019.01.011
  8. Daniels P., Ksiazek T., Eaton B. T. Laboratory diagnosis of Nipah and Hendra virus infections. Microbes and infection. Elsevier BV, 2001, vol. 3, no. 4, pp. 289-295. https://doi.org/10.1016/s1286-4579(01)01382-x
  9. Dolgova A. S., Kanaeva O. I., Antonov S. A., Shabalina A. V., Klyuchnikova E. O., Sbarzaglia V. A., Gladkikh A. S., Ivanova O. E., Kozlovskaya L. I., Dedkov, V. G. Qualitative real-time RT-PCR assay for nOPV2 poliovirus detection. Journal of Virological Methods. Elsevier BV, 2024, vol. 329, p. 114984. https://doi.org/10.1016/j.jviromet.2024.114984
  10. Eaton B. T., Broder C. C., Middleton D., Wang, L.-F. Hendra and Nipah viruses: different and dangerous. Nature Reviews Microbiology. Springer Science and Business Media LLC, 2006, vol. 4, no. 1, pp. 23–35. https://doi.org/10.1038/nrmicro1323
  11. Eaton B. T., Wang L.-F. Henipaviruses. Encyclopedia of Virology. Elsevier, 2008, pp. 321–327. https://doi.org/10.1016/b978-012374410-4.00653-1
  12. Gazal S., Sharma N., Gazal S., Tikoo M., Shikha D., Badroo G. A., Rashid M., Lee S.-J. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens. MDPI AG, 2022, vol. 11, no. 12, p. 1419. https://doi.org/10.3390/pathogens11121419
  13. Goncharova E. A., Dedkov V. G., Dolgova A. S., Kassirov I. S., Safonova M. V., Voytsekhovskaya Y., Totolian A. A. One‐step quantitative RT‐PCR assay with armored RNA controls for detection of SARS‐CoV‐2. Journal of Medical Virology. Wiley, 2020, vol. 93, no. 3, pp. 1694–1701. https://doi.org/10.1002/jmv.26540
  14. Guillaume V., Lefeuvre A., Faure C., Marianneau P., Buckland R., Lam S. K., Wild T. F., Deubel V. Specific detection of Nipah virus using real-time RT-PCR (TaqMan). Journal of Virological Methods. Elsevier BV, 2004, vol. 120, no. 2, pp. 229-237. https://doi.org/10.1016/j.jviromet.2004.05.018
  15. Hotard A. L., He B., Nichol S. T., Spiropoulou C. F., Lo M. K. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Research. Elsevier BV, 2017, vol. 144, pp. 147–152. https://doi.org/10.1016/j.antiviral.2017.06.011
  16. International Committee on Taxonomy of Viruses [website ICTV on the Internet]. Available from https://ictv.global/report/chapter/paramyxoviridae/paramyxoviridae/henipavirus (Accessed September 10, 2024)
  17. Jang M., Kim S. Inhibition of Non-specific Amplification in Loop-Mediated Isothermal Amplification via Tetramethylammonium Chloride. BioChip Journal. Springer Science and Business Media LLC, 2022, vol. 16, no. 3, pp. 326–333. https://doi.org/10.1007/s13206-022-00070-3
  18. Luo G.-C., Yi T.-T., Jiang B., Guo X., Zhang G.-Y. Betaine-assisted recombinase polymerase assay with enhanced specificity. Analytical Biochemistry. Elsevier BV, 2019, vol. 575, pp. 36–39. https://doi.org/10.1016/j.ab.2019.03.018
  19. Mire C. E., Satterfield B. A., Geisbert J. B., Agans K. N., Borisevich V., Yan L., Chan Y.-P., Cross R. W., Fenton K. A., Broder C. C., Geisbert T. W. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Scientific Reports. Springer Science and Business Media LLC, 2016, vol. 6, no. 1. https://doi.org/10.1038/srep30916
  20. Mungall B. A., Middleton D., Crameri G., Bingham J., Halpin K., Russell G., Green D., McEachern J., Pritchard L. I., Eaton B. T., Wang L. F., Bossart K. N., Broder C. C. Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. Journal of virology. American Society for Microbiology, 2006, vol. 80, no. 24, pp. 12293-12302. http://dx.doi.org/10.1128/JVI.01619-06
  21. Murray K., Selleck P., Hooper P., Hyatt A., Gould A., Gleeson L., Westbury H., Hiley L., Selvey L., Rodwell B., Ketterer, P. A Morbillivirus that Caused Fatal Fisease in Horses and Humans. Science. American Association for the Advancement of Science (AAAS), 1995, vol. 268, no. 5207, pp. 94–97. https://doi.org/10.1126/science.7701348
  22. Nipah virus infection – Bangladesh [website WHO on the Internet]. Available from https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON508 (Accessed September 7, 2024)
  23. O’Sullivan J., Allworth A., Paterson D., Snow T., Boots R., Gleeson L., Gould A., Hyatt A., Bradfield J. Fatal encephalitis due to novel paramyxovirus transmitted from horses. The Lancet. Elsevier BV, 1997, vol. 349, no. 9045, pp. 93–95. https://doi.org/10.1016/s0140-6736(96)06162-4
  24. Oliveira B. B., Veigas B., Baptista P. V. Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”. Frontiers in Sensors. Frontiers Media SA, 2021, vol. 2. https://doi.org/10.3389/fsens.2021.752600
  25. One dies of Nipah virus at DMCH [website on the Internet]. Available from https://www.thedailystar.net/health/disease/news/one-dies-nipah-virus-dmch-3246971 (Accessed September 7, 2024)
  26. Pollak N. M., Olsson M., Marsh G. A., Macdonald J., McMillan, D. Evaluation of three rapid low-resource molecular tests for Nipah virus. Frontiers in microbiology. Frontiers Media SA, 2023 vol. 13, p. 1101914. https://doi.org/10.3389/fmicb.2022.1101914
  27. Rota P. A., Lo M. K. Molecular Virology of the Henipaviruses. Current Topics in Microbiology and Immunology. Springer Berlin Heidelberg. 2012, vol. 359. pp. 41–58. http://dx.doi.org/10.1007/82_2012_211
  28. Satterfield B. A., Dawes B. E., Milligan G. N. Status of vaccine research and development of vaccines for Nipah virus. Vaccine. Elsevier BV, 2016, vol. 34, no. 26, pp. 2971–2975. https://doi.org/10.1016/j.vaccine.2015.12.075
  29. Skowron K., Bauza-Kaszewska J., Grudlewska-Buda K., Wiktorczyk-Kapischke N., Zacharski M., Bernaciak Z., Gospodarek-Komkowska E. Nipah Virus–Another Threat From the World of Zoonotic Viruses. Frontiers in Microbiology. Frontiers Media SA 2022, vol. 12. https://doi.org/10.3389/fmicb.2021.811157
  30. Smith I. L., Halpin K., Warrilow D., Smith G. A. Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. Journal of virological methods. Elsevier BV, 2001, vol. 98, no.1, pp. 33-40. https://doi.org/10.1016/s0166-0934(01)00354-8
  31. Soman Pillai V., Krishna G., Valiya Veettil M. Nipah Virus: Past Outbreaks and Future Containment. Viruses. MDPI AG, 2020, vol. 12, no. 4, p. 465. https://doi.org/10.3390/v12040465
  32. Srivastava P., Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech. Springer Science and Business Media LLC, 2023, vol. 13, no. 6. https://doi.org/10.1007/s13205-023-03628-6
  33. Taylor J., Thompson K., Annand E. J., Massey P. D., Bennett J., Eden J.-S., Horsburgh B. A., Hodgson E., Wood K., Kerr J., Kirkland P., Finlaison D., Peel A. J., Eby P., Durrheim D. N. Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia. One Health. Elsevier BV, 2022, vol. 15, p. 100423. https://doi.org/10.1016/j.onehlt.2022.100423
  34. Thakur N., Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes and Infection. Elsevier BV, 2019, vol. 21, no. 7, pp. 278–286. https://doi.org/10.1016/j.micinf.2019.02.002
  35. Wacharapluesadee S., Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. Journal of virological methods. Elsevier BV, 2007, vol. 141, no. 1, pp. 97–101. https://doi.org/10.1016/j.jviromet.2006.11.023
  36. Wang J., Anderson D. E., Halpin K., Hong X., Chen H., Walker S., Valdeter S., van der Heide B., Neave M. J., Bingham J., O’Brien D., Eagles D., Wang L.-F., Williams D. T. A new Hendra virus genotype found in Australian flying foxes. Virology Journal. Springer Science and Business Media LLC, 2021, vol. 18, no. 1, pp. 1-13. https://doi.org/10.1186/s12985-021-01652-7
  37. WHO R&D Blueprint: Priority diagnostics for Nipah use cases and target product profiles. World Health Organization. World Health Organization, Geneva, Switzerland, 2019. https://www.who.int/docs/default-source/blue-print/call-for-comments/who-nipah-dx-tpps-d.pdf?sfvrsn=8a856311_4 (Accessed September 7, 2024).
  38. World Health Organization. Nipah Virus [website WHO on the Internet]. Available from https://www.who.int/news-room/fact-sheets/detail/nipah-virus (Accessed September 7, 2024).
  39. Yang M., Zhu W., Truong T., Pickering B., Babiuk S., Kobasa D., Banadyga L. Detection of Nipah and Hendra Viruses Using Recombinant Human Ephrin B2 Capture Virus in Immunoassays. Viruses. MDPI AG, 2022, vol. 14, no. 8, p. 1657. https://doi.org/10.3390/v14081657
  40. Yuen K. Y., Fraser N. S., Henning J., Halpin K., Gibson J. S., Betzien L., Stewart A. J. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health. Elsevier BV, 2021, vol. 12, p. 100207. https://doi.org/10.1016/j.onehlt.2020.100207

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Shirobokova S.A., Shabalina A.V., Sukhikh I.S., Shayeb V.A., Dolgova A.S., Dedkov V.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies