Разработка метода ОТ-ПЦР в режиме реального времени для обнаружения вирусов Хендра и Нипах

Обложка


Цитировать

Полный текст

Аннотация

Статья посвящена разработке способа обнаружения вирусной РНК двух высокопатогенных зоонозных вирусов из рода Henipavirus — Хендра и Нипах с помощью полимеразной цепной реакции с обратной транскрипцией в реальном времени. В естественной среде эти вирусы переносятся летучими лисицами из семейства Pteropodidae. Заражению подвержены лошади и свиньи соответственно. Заболевания также передаются человеку через контакт с больными животными, их биологическими выделениями и от человека к человеку. У инфицированных людей и животных клинические признаки инфекции могут протекать бессимптомно, либо проявляющимися грипподобными симптомами на начальном этапе болезни и переходящие в неврологические заболевания и острую респираторную инфекцию с последующим летальным исходом. На сегодняшний день не разработано лечение против этих инфекций. Изученную субъединичную вакцину HeV-sG (Equivac®HeV, Zoetis Australia Pty Ltd.) используют в Австралии для лошадей против инфекции Хендра. Однако эта вакцина не используется для людей, и в настоящее время нет коммерчески доступных вакцин против вируса Нипах ни для человека, ни для животных. Необходимость разработки новых методов детекции и поиск новых вирусных мишеней по-прежнему остаются актуальным задачами в связи с большим ареалом распространения описанных вирусов, высокой контагиозностью и смертностью животных и людей. В исследовании описываются оригинальные разработанные праймеры и зонды на консервативные регионы геномов двух вирусов: гена, кодирующего нуклеокапсидный белок вируса Хендра и гена, кодирующего гликопротеин вируса Нипах. Созданы синтетические контроли прохождения этапов экстракции проб и постановки ПЦР с обратной транскрипцией в реальном времени, подтверждающие качество разработанного метода. Биологические образцы от здоровых людей (плазма крови, мазки со слизистых рото- и носоглотки, спинномозговая жидкость) с добавлением искусственных контролей проходили этапы выделения и постановку ПЦР с обратной транскрипцией в реальном времени, тем самым подтверждая качество контрольных образцов. Предел обнаружения описанных способов идентификации вирусной РНК определен как 100 копий/мл для вируса Хендра и 1000 копий/мл для вируса Нипах. Время прохождения амплификации составляет менее 90 минут. Разработанный способ поможет в эпидемиологическом контроле по распространениям данных инфекций, может применяться в диагностике вирусов Хендра и Нипах и для решения научно-исследовательских задач по изучению свойств данных патогенов.

Полный текст

Introduction

The Henipavirus hendraense (HeV) and Henipavirus nipahense (NiV) viruses belong to the family Paramyxoviridae, subfamily Paramyxovirinae [27]. The genus Henipavirus includes three species nonpathogenic to humans (H. cedarense, H. ghanaense, H. angavokelyense) and two highly pathogenic species (H. hendraense, H. nipahense) [16]. HeV and NiV are enveloped single-stranded, negative-sense RNA viruses. The genomes are represented by six genes encoding the main structural proteins, located in the following order from the 3' end: nucleocapsid protein (N); phosphoprotein (P); matrix protein (M); fusion protein (F); glycoprotein (G); and large protein (RNA polymerase (L)) [12]. The Hendra virus genome is 18 243 nucleotides in length [11], with several genotypes: HeV-g1 (discovered in 1994) and HeV-g2 (described in 2013) [2, 36]. There are several Nipah strains: the Malaysia strain (described in 1999) and the Bangladesh strain (identified in 2001) [19]. The genome sizes of these Nipah strains vary and are approximately 18 246 and 18 252 nucleotides, respectively [7, 29].

The natural hosts of the Hendra and Nipah viruses in nature are fruit bats belonging to the genus Pteropus, family Pteropodidae. The distribution area of these animals is wide: the east coast of Africa, the Indian subcontinent, Southeast Asia, north to Okinawa and south to Australia [11]. The viruses are transmitted to humans, in most cases, through intermediate hosts. For NiV, the intermediate host is pigs. For HeV, it is horses. NiV can be transmitted from bats to humans and from humans to humans. HeV is transmitted from bats to horses and from horses to humans through direct contact with the excreta of infected horses. Human-to-human transmission of HeV has not yet been recorded [12].

Outbreaks of Hendra virus have been recorded in northeastern Australia since 1994. To date, 105 cases of equine infection with Hendra virus are known, 88 of which have been fatal. Another 20 fatal cases remain with an unconfirmed diagnosis, but with symptoms similar to HeV infection [6]. Among humans during the same period of viral circulation, seven people were infected. Four died, and three recovered, albeit with various complications [6, 21, 23, 40]. The case fatality rates in horses and humans are approximately 80% and 60%, respectively [6, 40].

The main Nipah virus outbreak regions are Malaysia (43%), Bangladesh (42%), and India (15%) [31]. Since 2001, outbreaks have been registered in Bangladesh and nearby regions almost annually. According to the WHO, the last epidemiological cases in Bangladesh were recorded on January 30 and February 7, 2024 [4, 22, 25]. Nipah virus is apparently transmitted through direct contact with contaminated tissues/body fluids of infected pigs.

The incubation period of Nipah encephalitis ranges from 4 to 45 days [34, 38], while Hendra encephalitis averages 3 to 16 days, both in horses and humans [40]. The main target organs of these viruses are the brain, lungs, heart, kidneys, and spleen [31]. Initial flu-like symptoms, fever, headache, and drowsiness very quickly develop into an encephalitis syndrome, including neurological symptoms [33].

As of 2022, the most studied vaccine against Hendra infection is the HeV-sG subunit vaccine (Equivac®HeV, Zoetis Australia Pty Ltd.) based on soluble recombinant glycoprotein HeV [15, 28]. However, this vaccine is not used for humans, and there are currently no commercially available vaccines against Nipah virus.

The development of effective and affordable methods for diagnosing infections caused by Hendra and Nipah viruses is relevant and important for several reasons. These include: poor knowledge of their viral pathogenesis; their highly contagious nature; and the large area of distribution involved (hosts, vectors, cases, etc.). Existing isothermal detection methods, such as LAMP, RPA, and NASBA, are inferior in sensitivity to classic RT-PCR methods [17, 18, 24, 32]. Variants of the latter aimed at detecting HeV and NiV have only been described in a few articles [8, 14, 20, 30, 37]. This study describes the development and evaluation of one-step real-time RT-PCR assays with original primers and probes for Hendra and Nipah virus detection.

Materials and methods

Identification of conserved genomic regions. Complete viral genomic sequences (19 Hendra, 83 Nipah) were aligned to identify conserved sites. Alignment was performed using the MEGA v.11 program (Oxford University, Great Britain). Figure 1 shows alignments of selected genomic segments of all Hendra virus isolates and 20 Nipah virus isolates, collected from different locations and in different years. A conserved region of the gene (RNA sequence) encoding nucleocapsid protein N was chosen as the target for oligonucleotide primers and a probe for Hendra virus. The gene encoding glycoprotein G was chosen for Nipah virus.

 

Figure 1. Alignment of target region nucleotide sequences

Note. A. Alignment of the Henipavirus hendraense N gene segment with isolates of this virus with GenBank accession numbers: NC_001906.3 — Hendra virus reference genome (no information about collection date); MN062017.1 — Australia, 1994; HM044318.1 — Australia, 2006; JN255804.1; HM044319.1; HM044321.1 — Australia, 2007; HM044317.1; HM044320.1; JN255805.1 — Australia, 2008; JN255802.1; JN255801.1; JN255800.1; JN255803.1; JN255806.1 — Australia, 2009; MZ318101.1 — Australia, 2015; MZ229748.1; MZ229747.1; MZ229746.1 — Australia, 2020; AF017149.3 (no information about place/date of sample collection). Primers and probe: HeV_f1, HeV_r1, HeV_prb1. B. Alignment of the Henipavirus nipahense G gene segment with isolates of this virus with GenBank accession numbers: MK673558.1; MK673559.1 — Malaysia, 1999; AY029768.1 — Malaysia (no information about collection date); MK801755.1 — Cambodia, 2003; MK673565.1 — Bangladesh, 2004; JN808857.1 — Bangladesh, 2008; MK673568.1; MK673574.1 — Bangladesh, 2011; MK673581.1 — Bangladesh, 2012; MK575065.1; MK575066.1 — Bangladesh, 2013; MK673591.1 — Bangladesh, 2014; MK673585.1 — Bangladesh, 2015; PP981670.1 — Bangladesh, 2020; PP981674.1 — Bangladesh, 2022; FJ513078.1 — India, 2007; MH396625.1 — India, 2018; OR820508.1 — India, 2023; MW535746.1 — Thailand, 2017; AJ564623.1 (no information about place/date of sample collection). Primers and probe: NiV_f1, NiV_r1, NiV_prb1

 

PCR control samples. The control sample set is similar to that already described [9, 13]. It includes internal extraction control (IC), armored RNA control (ARC), negative control of extraction (NEC), and PCR controls (C+, C–). To create DNA and RNA controls, fragments corresponding to target regions in the respective viral genomes (160 bp HeV, 174 bp NiV) were synthesized de novo by the previously described two-step PCR method [3] from the primers listed in Table 1.

 

Table 1. Oligonucleotide sequences for de novo cDNA synthesis by two-step PCR

Name

Sequence (5'→3')

Fragment size, bp

HeV_1

AGGAAAGTGAGACCAGAAGATGGGCAAAGTATGTTCAACAAAAGAGGGTC

160

HeV_2

TGTCAGCCATTGCTGGGTTAAGGCAAAGAATGGATTGACCCTCTTTTGTTGAACATACTT

HeV_3

ACCCAGCAATGGCTGACAGAGATGAGGAATCTCCTCTCACAAAGTCTCTCAGTCAGAAAA

HeV_4

TTCTTTACCTCCATCAGAATTTCCACCATGAATTTTCTGACTGAGAGACTTTGTG

NiV_1

AGGGCCCAAAGTATCACTGATTGACACATCCAGTACCATTACTATCCCAGCTAACAT

174

NiV_2

TGCAGTCGACTGGCTGATCTTTGAACCTAACAGCCCAATGTTAGCTGGGATAGTAATGGT

NiV_3

TCAGCCAGTCGACTGCAAGTATAAATGAGAATGTGAATGAAAAATGCAAATTCACACTGC

NiV_4

GGACAAGAAATGTTACATTCGTGGATTTTCAAGGGAGGCAGTGTGAATTTGCATTTTTCA

 

Primer and probe design. Primer and probe sequences were by synthesized by Genterra (Moscow, Russia) as listed in Table 2. Primer melting temperature was estimated using the Integrated DNA Technologies OligoAnalyzer software (https://www.idtdna.com/calc/analyzer). Virus-specific probes were covalently modified with adducts: the fluorescent reporter dye rhodamine 6G (R6G) at the 5' end; and black hole quencher (BHQ1) at the 3' end. FAM was used as a fluorophore at the 5' end of the internal control, and BHQ1 was used as a quencher at the 3' end.

 

Table 2. Primers and probes used in the study

Primer/ probe

Sequence 5'→3'

Modifications 5'→3'

Gene target

Probe type

Length

Amplified fragment size, bp

NiV_f1

agt atc act gat tga yac atc cag

Attachment G glycoprotein gene

24

155

NiV_r1

tgt tac att cgt gga ttt tca agg

24

NiV_prb1

att ggg ctg tta ggt tca aag atc agc c

R6g — BHQ1

TaqMan

28

HeV_f1

acc aga aga tgg gca aag tat g

Nucleocapsid (N) protein gene

22

133

HeV_r1

tca gaa ttt cca cca tga att ttc tg

26

HeV_prb1

agg gtc aat cca ttc ttt gcc tta acc cag

R6g — BHQ1

TaqMan

30

IC_f

ccg gat tgc gta tct ccg gac t

Artificial target

22

122

IC_r

cac ggc ggc atc tct atc acg a

22

IC_prb

tag ctg ggc gtc agg aat ccc agg

FAM — BHQ1

TaqMan

24

 

Reaction mixture and amplification conditions. Reactions were carried out in a volume of 25 μL including: 1 μl of BioMaster Mix (Biolabmix, Russia), 12.5 μl 2X reaction buffer (Biolabmix, Russia), and 1.5 μl specific primer and probe mixture. Forward and reverse primer concentrations were 10.5 pmol/μl for all three amplicon types (HeV, NiV, IC). Probe concentrations were 7.5 pmol/μl. Ten microliters of sample were used, and reactions were brought to 25 µL with H2O (Milli-Q, Merck Millipore, USA). Reactions were performed using the “CFX96 C1000 Touch” (Bio-Rad, USA). The amplification conditions are listed in Tables 3 and 4.

 

Table 3. Hendra virus RNA amplification conditions

Step

Temperature, °C

Time

The number of cycles

Reverse transcription

50

15 min

1

Pre-denaturation

95

5 min

1

Denaturation

95

10 sec

40

Primer elongation and annealing + detection

55

30 sec

 

Table 4. Nipah virus RNA amplification conditions

Step

Temperature, °C

Time

The number of cycles

Reverse transcription

50

15 min

1

Pre-denaturation

95

5 min

1

Denaturation

95

10 sec

40

Primer elongation and annealing + detection

60

20 sec

 

Limit of detection. Limit of detection (LOD) values were determined using a series of 10-fold dilutions of armored RNA particles (same as armored ARC) at known concentrations. Concentrations were measured by droplet digital PCR (ddPCR). The concentrations used to determine the detection limit were 106, 105, 104, 103, 102, and 10 copies of armored RNA particles per mL (20 000–0.2 copies/reaction, respectively). Samples from each dilution (100 µL) were extracted in triplicate using the RIBO-prep kit (AmpliSens®, Russia) according to manufacturer instructions (elution volume 60 µL), followed by testing in the developed HeV and NiV Amp RT-PCR methods.

Analytical specificity. Analytical specificity was tested on a panel of samples (viral RNA/DNA) representing heterologous viral strains, as obtained from the St. Petersburg Pasteur Institute collection (Table 5)

 

Table 5. Viruses used in the assay to evaluate the analytical specificity of the method

Virus

Family

Genus

Nucleic acid type

Human parainfluenza virus type 3

Paramyxoviridae

Respirovirus

RNA

Influenza A virus (A/Puerto Rico/8/34 (H1N1))

Orthomyxoviridae

Alphainfluenzavirus

RNA

Influenza B virus (B/Florida/04/06)

Orthomyxoviridae

Betainfluenzavirus

RNA

Human adenovirus type 5

Adenoviridae

Mastadenovirus

DNA

Human rhinovirus type 1

Picornaviridae

Enterovirus

RNA

Tick-borne encephalitis virus

Flaviviridae

Flavivirus

RNA

Rabies virus

Rhabdoviridae

Lyssavirus

RNA

Measles virus

Paramyxoviridae

Morbillivirus

RNA

Human respiratory syncytial virus

Pneumoviridae

Orthopneumovirus

RNA

SARS-CoV-2

Coronaviridae

Betacoronavirus

RNA

Human coronavirus OC43

Coronaviridae

Betacoronavirus

RNA

 

Samples with added armored RNA control. Due to a lack of available clinical samples containing HeV and NiV viruses, three types of biological samples with the addition of armored genetic constructs (ARC) were used in the study. These were blood plasma samples, mucosal swabs (nasopharyngeal or oropharyngeal), and cerebrospinal fluid (CSF) samples obtained from healthy individuals. The same biologcal samples were also used as negative controls without the addition of artificial sequences. There were 25 samples in each biological group with three replicates. The average value of three replicates was used for analysis. The results are presented in Table 6.

 

Table 6. Average Ct values (three replicates) for three biological sample types with addition of HeV ARC and NiV ARC

 

HeV

NiV

 

HeV

NiV

 

HeV

NiV

Sample name

Ct indicator

Sample name

Ct indicator

Sample name

Ct indicator

blood 1

33.6

30.1

swab 1

31.7

29.2

CSF 1

32.9

29.1

blood 2

33.8

30

swab 2

31.6

29.9

CSF 2

34

30.1

blood 3

32.9

30.1

swab 3

31.7

31.1

CSF 3

33.1

31.4

blood 4

33.9

29.4

swab 4

31.7

29.2

CSF 4

34.3

29.6

blood 5

33.8

30

swab 5

31.7

29.2

CSF 5

33.5

31.1

blood 6

33.2

30

swab 6

31.6

29.2

CSF 6

33.5

31.2

blood 7

33.4

30.1

swab 7

31.7

31.3

CSF 7

33.6

31.3

blood 8

33.8

30

swab 8

31.8

29.7

CSF 8

34

29.1

blood 9

32.8

29.9

swab 9

31.5

29.2

CSF 9

33.6

29.5

blood 10

32.4

30.1

swab 10

32

29.3

CSF 10

33.5

30.8

blood 11

32.4

30

swab 11

31.8

29.2

CSF 11

32.9

29.1

blood 12

33.3

30

swab 12

32.2

29

CSF 12

32.5

29.2

blood 13

33.9

30

swab 13

31.7

29.1

CSF 13

33.7

29.8

blood 14

32.7

29.5

swab 14

30.9

29.2

CSF 14

32.3

30.1

blood 15

33.6

30.1

swab 15

31.8

29

CSF 15

34.1

29.4

blood 16

34

30.1

swab 16

31.2

30.1

CSF 16

33.2

30.2

blood 17

34

29.5

swab 17

31.1

29.3

CSF 17

33.4

29.5

blood 18

32.4

30.2

swab 18

30.6

29.3

CSF 18

33.7

29.3

blood 19

32.9

29.9

swab 19

31.3

29.7

CSF 19

34.1

29.8

blood 20

32.5

29.5

swab 20

32.1

29.2

CSF 20

33.9

29.2

blood 21

32.5

29.8

swab 21

31.1

29.2

CSF 21

33

29.3

blood 22

32.6

30.7

swab 22

31.5

31

CSF 22

33.9

29.9

blood 23

32.6

29.9

swab 23

31.6

29.2

CSF 23

32.1

29.9

blood 24

33.3

30.3

swab 24

31.8

29.2

CSF 24

33.4

30

blood 25

33.4

29.4

swab 25

31.1

31

CSF 25

32.4

29.6

 

Results

New primers and probes for identification of HeV and NiV viruses were developed based on the analyzed sequences of viral isolates from the GenBank database. In addition to definition of amplification protocols, positive (ARC, C+) and negative (NEC, C–) controls were used at each stage of the study. These confirm the reliability of the obtained data.

Limit of detection (LOD) assessed using ARC dilutions was measured as the minimum dilution found in all replicates. Values were 1 × 102 RNA copies/mL and 1 × 103 RNA copies/mL for Hendra and Nipah virus, respectively (Table 7, Fig. 2).

 

Figure 2. HEX fluorescence curves of Hendra (A) and Nipah (B) virus control samples

Note. Samples: black — C+, dark blue — ARC 106 copies/mL, pink — ARC 105 copies/mL, violet — ARC 104 copies/mL, blue — ARC 103 copies/mL, yellow — ARC 102 copies/mL. The ARC 10 copies/mL, negative control, and C — samples are negative. A plate type instrument, CFX96 C1000 Touch (Bio-Rad, USA), was used.

 

Table 7. Threshold cycle values (Сt) of the HEX/yellow channel (ARC dilution) for the HeV and NiV virus protocols calculated from three replicates

Concentration, copies/ml

HeV replicates

NiV replicates

Ct

Ct

106

24.3

27.8

105

28.3

31.1

104

31.5

34.3

103

35.1

37.7

102

39.3

N/A

10

N/A

N/A

 

Threshold (Ct) values for biological samples with the addition of ARC are presented in Table 6. The obtained results are within the LOD ranges for the corresponding virus. These data indicate: good reproducibility of the method; efficient ARC recovery during co-extraction and amplification with biological samples; and suitable sensitivity of the developed approach for the detection of viral RNA. The potential for cross-reactivity was assessed using RNA/DNA from 11 viral species (Table 5). None of them showed a positive reaction with the HeV or NiV real-time RT-PCR assays. The evaluated analytical specificity was 100% (data not shown).

Discussion

Hendra and Nipah viruses are zoonotic pathogens characterized by high pathogenicity and mortality, both in animals and humans [39]. Both viruses are classified as containment level 4 (CL4) pathogens. Moreover, NiV infection is currently included in the World Health Organization (WHO) list of priority diseases [1]. Episodic outbreaks of disease caused by HeV and NiV require highly sensitive diagnostic tools to effectively identify infected individuals and prevent further viral spread.

Proper selection of the target for molecular detection is an important factor in diagnostic tool development. Both sensitivity and specificity of the system depend on it. Viral genomes feature high mutation rates, which lead to the emergence of different genetic variants. In our research, we primarily selected conserved regions covering the entire known spectrum of genetic variants. Accordingly, we selected specific regions of the following genes for the annealing of primers and probes. For HeV, the gene encoding nucleocapsid protein N was chosen. For NiV, the gene encoding protein G was chosen. The N protein gene is a frequently used target for diagnostic methods based on Henipavirus nucleic acid amplification. For Hendra and Nipah virus, there are several such studies [8, 14, 20, 26]. Other genomic regions are used less frequently, for example genes encoding proteins L [35], C, M [8, 30], or G [5].

In the previously cited studies, the average amplification reaction time for Hendra and Nipah viruses is from 2 to 3 hours [14, 20, 30, 35, 37], with the exception of isothermal amplification in the work of Pollak [26]. It should be noted, however, that although isothermal amplification provides a faster result, it is inferior in sensitivity to real-time PCR, and sensitivity may be as low as 106 copies/mL. In the methods developed and described here, the overall processing times (reverse transcription and amplification) are 86 minutes for the HeV virus and 76 minutes for the NiV virus. Analytical sensitivity was assessed to be high for both assays as well: 1 × 102 copies/mL for HeV and 1 × 103 copies/mL for NiV.

Due to a lack of available clinical samples containing HeV and NiV viruses, the system was tested on three types of biological samples from healthy individuals with addition of specific genetic constructs (armored RNA controls, ARC) simulating real viruses. These were blood plasma, mucosal swabs (nasopharyngeal or oropharyngeal), and cerebrospinal fluid. In all cases, isolation and further RT-PCR detection were successful.

Conclusion

This manuscript reports the development and evaluation of real-time RT-PCR assays for Henipavirus hendraense (HeV) and Henipavirus nipahense (NiV) detection. For detection, the HeV and NiV assays target fragments of the N and G genes, respectively. The distinctive feature of our system is the presence of multiple controls, high sensitivity, and short reaction times. Both assays contain all of the necessary components to perform the analysis, including internal extraction control (IC), positive control for reverse transcription (ARC), negative control of extraction (NEC), and PCR controls (C+, C–). The advantage of this assay is that it allows the internal verification of all steps of the analysis, including extraction, reverse transcription, and PCR. Our results revealed that the LOD values for the assays are: 1 × 102 copies/mL for HeV viral RNA and 1 × 103 copies/mL for NiV viral RNA. In addition, both assays feature reaction times (one-step RT-PCR) less than 90 minutes.

×

Об авторах

Светлана Алексеевна Широбокова

ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Автор, ответственный за переписку.
Email: schirobokova.s@gmail.com

младший научный сотрудник лаборатории молекулярной генетики патогенных микроорганизмов

Россия, Санкт-Петербург

Анна Вячеславовна Шабалина

ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Email: shabalina@pasteurorg.ru

младший научный сотрудник лаборатории молекулярной генетики патогенных микроорганизмов

Россия, Санкт-Петербург

Игорь Сергеевич Сухих

ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Email: igor3419@gmail.com

к.б.н., научный сотрудник лаборатории молекулярной генетики патогенных микроорганизмов

Россия, Санкт-Петербург

Вера Абденнасеровна Шайеб

ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Email: shaieb@pasteurorg.ru

к.б.н., младший научный сотрудник лаборатории молекулярной генетики патогенных микроорганизмов

Россия, Санкт-Петербург

Анна Сергеевна Долгова

ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Email: dolgova@pasteurorg.ru

к.б.н., старший научный сотрудник, зав. лабораторией молекулярной генетики патогенных микроорганизмов

Россия, Санкт-Петербург

Владимир Георгиевич Дедков

ФБУН НИИ эпидемиологии и микробиологии имени Пастера; Институт медицинской паразитологии, тропических и трансмиссивных заболеваний им. Е.И. Марциновского

Email: vgdedkov@yandex.ru

к.м.н., зам. директора по научной работе, ведущий научный сотрудник

Россия, Санкт-Петербург; Москва

Список литературы

  1. Aljofan M. Hendra and Nipah infection: Emerging paramyxoviruses. Virus Res., 2013, vol. 177, no. 2, pp. 119–126. doi: 10.1016/j.virusres.2013.08.002
  2. Annand E.J., Horsburgh B.A., Xu K., Reid P.A., Poole B., de Kantzow M.C., Brown N., Tweedie A., Michie M., Grewar J.D., Jackson A.E., Singanallur N.B., Plain K.M., Kim K., Tachedjian M., van der Heide B., Crameri S., Williams D.T., Secombe C., Laing E.D., Sterling S., Yan L., Jackson L., Jones C., Plowright R.K., Peel A.J., Breed A.C., Diallo I., Dhand N.K., Britton P.N., Broder C.C., Smith I., Eden J.-S. Novel Hendra Virus Variant Detected by Sentinel Surveillance of Horses in Australia. Emerg. Infect. Dis., 2022, vol. 28, no. 3, pp. 693–704. doi: 10.3201/eid2803.211245
  3. Askari M.R.A., Menezes G.A., Omran H.H., Ejaz A., Ejaz H., Hameed S.S. Nipah Virus: A Threatening Outbreak. J. Clin. Diagn. Res., 2023, vol. 17, no. 2, pp. DE01–DE07. doi: 10.7860/jcdr/2023/52734.17504
  4. Bangladesh reports two Nipah deaths in 2024 to date. URL: https://open.substack.com/pub/outbreaknewstoday/p/bangladesh-reports-two-nipah-deaths?utm_campaign=post&utm_medium=web
  5. Bossart K.N., Rockx B., Feldmann F., Brining D., Scott D., LaCasse R., Geisbert J.B., Feng Y.-R., Chan Y.-P., Hickey A.C., Broder C.C., Feldmann H., Geisbert T.W. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci. Transl. Med., 2012, vol. 4, no. 146: 146ra107. doi: 10.1126/scitranslmed.3004241
  6. Business Queensland. Summary of Hendra virus incidents in horses. URL: https://www.business.qld.gov.au/industries/service-industries-professionals/service-industries/veterinary-surgeons/guidelines-hendra/incident-summary
  7. Chakraborty S., Deb B., Barbhuiya P.A., Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus. Virus Res., 2019, vol. 263, pp. 129–138. doi: 10.1016/j.virusres.2019.01.011
  8. Daniels P., Ksiazek T., Eaton B.T. Laboratory diagnosis of Nipah and Hendra virus infections. Microbes Infect., 2001, vol. 3, no. 4, pp. 289–295. doi: 10.1016/s1286-4579(01)01382-x
  9. Dolgova A.S., Kanaeva O.I., Antonov S.A., Shabalina A.V., Klyuchnikova E.O., Sbarzaglia V.A., Gladkikh A.S., Ivanova O.E., Kozlovskaya L.I., Dedkov V.G. Qualitative real-time RT-PCR assay for nOPV2 poliovirus detection. J. Virol. Methods., 2024, vol. 329: 114984. doi: 10.1016/j.jviromet.2024.114984
  10. Eaton B.T., Broder C.C., Middleton D., Wang L.-F. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol., 2006, vol. 4, no. 1, pp. 23–35. doi: 10.1038/nrmicro1323
  11. Eaton B.T., Wang L.-F. Henipaviruses. Encycl. Virol., 2008, pp. 321–327. doi: 10.1016/b978-012374410-4.00653-1
  12. Gazal S., Sharma N., Gazal S., Tikoo M., Shikha D., Badroo G.A., Rashid M., Lee S.-J. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens, 2022, vol. 11, no. 12: 1419. doi: 10.3390/pathogens11121419
  13. Goncharova E.A., Dedkov V.G., Dolgova A.S., Kassirov I.S., Safonova M.V., Voytsekhovskaya Y., Totolian A.A. One‐step quantitative RT‐PCR assay with armored RNA controls for detection of SARS-CoV-2. J. Med. Virol., 2020, vol. 93, no. 3, pp. 1694–1701. doi: 10.1002/jmv.26540
  14. Guillaume V., Lefeuvre A., Faure C., Marianneau P., Buckland R., Lam S.K., Wild T.F., Deubel V. Specific detection of Nipah virus using real-time RT-PCR (TaqMan). J. Virol. Methods., 2004, vol. 120, no. 2, pp. 229–237. doi: 10.1016/j.jviromet.2004.05.018
  15. Hotard A.L., He B., Nichol S.T., Spiropoulou C.F., Lo M.K. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antivir. Res., 2017, vol. 144, pp. 147–152. doi: 10.1016/j.antiviral.2017.06.011
  16. International Committee on Taxonomy of Viruses. URL: https://ictv.global/report/chapter/paramyxoviridae/paramyxoviridae/henipavirus
  17. Jang M., Kim S. Inhibition of Non-specific Amplification in Loop-Mediated Isothermal Amplification via Tetramethylammonium Chloride. BioChip J., 2022, vol. 16, no. 3, pp. 326–333. doi: 10.1007/s13206-022-00070-3
  18. Luo G.-C., Yi T.-T., Jiang B., Guo X., Zhang G.-Y. Betaine-assisted recombinase polymerase assay with enhanced specificity. Anal. Biochem., 2019, vol. 575, pp. 36–39. doi: 10.1016/j.ab.2019.03.018
  19. Mire C.E., Satterfield B.A., Geisbert J.B., Agans K.N., Borisevich V., Yan L., Chan Y.-P., Cross R.W., Fenton K.A., Broder C.C., Geisbert T.W. Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications for Antibody Therapy. Sci. Rep., 2016, vol. 6: 30916. doi: 10.1038/srep30916
  20. Mungall B.A., Middleton D., Crameri G., Bingham J., Halpin K., Russell G., Broder C.C. Feline model of acute nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J. Virol., 2006, vol. 80, no. 24, pp. 12293–12302. doi: 10.1128/JVI.01619-06
  21. Murray K., Selleck P., Hooper P., Hyatt A., Gould A., Gleeson L., Westbury H., Hiley L., Selvey L., Rodwell B., Ketterer P. A Morbillivirus that Caused Fatal Disease in Horses and Humans. Science, 1995, vol. 268, no. 5207, pp. 94–97. doi: 10.1126/science.7701348
  22. Nipah virus infection – Bangladesh. URL: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON508
  23. O’Sullivan J., Allworth A., Paterson D., Snow T., Boots R., Gleeson L., Gould A., Hyatt A., Bradfield J. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet, 1997, vol. 349, no. 9045, pp. 93–95. doi: 10.1016/s0140-6736(96)06162-4
  24. Oliveira B.B., Veigas B., Baptista P.V. Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard”. Front. Sens., 2021, vol. 2: 752600. doi: 10.3389/fsens.2021.752600
  25. One dies of Nipah virus at DMCH. URL: https://www.thedailystar.net/health/disease/news/one-dies-nipah-virus-dmch-3246971
  26. Pollak N.M., Olsson M., Marsh G.A., Macdonald J., McMillan D. Evaluation of three rapid low-resource molecular tests for Nipah virus. Front. Microbiol., 2023, vol. 13: 1101914. doi: 10.3389/fmicb.2022.1101914
  27. Rota P.A., Lo M.K. Molecular Virology of the Henipaviruses. Curr. Top. Microbiol. Immunol., 2012, vol. 359, pp. 41–58. doi: 10.1007/82_2012_211
  28. Satterfield B.A., Dawes B.E., Milligan G.N. Status of vaccine research and development of vaccines for Nipah virus. Vaccine, 2016, vol. 34, no. 26, pp. 2971–2975. doi: 10.1016/j.vaccine.2015.12.075
  29. Skowron K., Bauza-Kaszewska J., Grudlewska-Buda K., Wiktorczyk-Kapischke N., Zacharski M., Bernaciak Z., Gospodarek-Komkowska E. Nipah Virus — Another Threat From the World of Zoonotic Viruses. Front. Microbiol., 2022, vol. 12: 811157. doi: 10.3389/fmicb.2021.811157
  30. Smith I.L., Halpin K., Warrilow D., Smith G.A. Development of a fluorogenic RT-PCR assay (TaqMan) for the detection of Hendra virus. J. Virol. Methods., 2001, vol. 98, no. 1, pp. 33–40. doi: 10.1016/s0166-0934(01)00354-8
  31. Soman Pillai V., Krishna G., Valiya Veettil M. Nipah Virus: Past Outbreaks and Future Containment. Viruses, 2020, vol. 12, no. 4: 465. doi: 10.3390/v12040465
  32. Srivastava P., Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech., 2023, vol. 13, no. 6: 3628. doi: 10.1007/s13205-023-03628-6
  33. Taylor J., Thompson K., Annand E.J., Massey P.D., Bennett J., Eden J.-S., Horsburgh B.A., Hodgson E., Wood K., Kerr J., Kirkland P., Finlaison D., Peel A.J., Eby P., Durrheim D.N. Novel variant Hendra virus genotype 2 infection in a horse in the greater Newcastle region, New South Wales, Australia. One Health., 2022, vol. 15: 100423. doi: 10.1016/j.onehlt.2022.100423
  34. Thakur N., Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect., 2019, vol. 21, no. 7, pp. 278–286. doi: 10.1016/j.micinf.2019.02.002
  35. Wacharapluesadee S., Hemachudha T. Duplex nested RT-PCR for detection of Nipah virus RNA from urine specimens of bats. J. Virol. Methods, 2007, vol. 141, no. 1, pp. 97–101. doi: 10.1016/j.jviromet.2006.11.023
  36. Wang J., Anderson D.E., Halpin K., Hong X., Chen H., Walker S., Valdeter S., van der Heide B., Neave M.J., Bingham J., O’Brien D., Eagles D., Wang L.-F., Williams D.T. A new Hendra virus genotype found in Australian flying foxes. Virol. J., 2021, vol. 18, no. 1, pp. 1–13. doi: 10.1186/s12985-021-01652-7
  37. WHO R&D Blueprint: Priority diagnostics for Nipah use cases and target product profiles. URL: https://www.who.int/docs/default-source/blue-print/call-for-comments/who-nipah-dx-tpps-d.pdf?sfvrsn=8a856311_4
  38. World Health Organization. Nipah Virus. URL: https://www.who.int/news-room/fact-sheets/detail/nipah-virus
  39. Yang M., Zhu W., Truong T., Pickering B., Babiuk S., Kobasa D., Banadyga L. Detection of Nipah and Hendra Viruses Using Recombinant Human Ephrin B2 Capture Virus in Immunoassays. Viruses, 2022, vol. 14, no. 8: 1657. doi: 10.3390/v14081657
  40. Yuen K.Y., Fraser N.S., Henning J., Halpin K., Gibson J.S., Betzien L., Stewart A.J. Hendra virus: epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health, 2021, vol. 12: 100207. doi: 10.1016/j.onehlt.2020.100207

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1. Выравнивание нуклеотидных последовательностей области-мишени

3. Рисунок 2. Шестигранные кривые флуоресценции контрольных образцов вирусов Hendra (А) и Nipah (Б)

Скачать (240KB)

© Широбокова С.А., Шабалина А.В., Сухих И.С., Шайеб В.А., Долгова А.С., Дедков В.Г., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах