THE INTERACTION BETWEEN VIRAL AND BACTERIAL INFECTIONS: A COMPREHENSIVE REVIEW FOCUSING ON HERPES SIMPLEX VIRUS (HSV)



Cite item

Full Text

Abstract

Abstract

The interaction between viruses and bacteria has a significant impact on human health, affecting various microbial ecosystems in the respiratory and urogenital tracts as well as in cases of ventilator-associated pneumonia. These interactions can be complex and contribute to the development of diseases. Some interactions benefit the virus directly, while others indirectly create conditions favorable for bacterial growth. For instance, viruses can damage epithelial cells, disrupt the immune system, and alter the composition of the microbiota, making the host more susceptible to bacterial infections. Conversely, bacterial species can influence viral infections by altering the host environment and potentially contributing to viral transmission. Herpes simplex virus (HSV) is a common infection caused by two types, HSV-1 and HSV-2, which can lead to various illnesses ranging from mild mucocutaneous infections to severe neurological and systemic complications. HSV-1 is often associated with cold sores, while HSV-2 primarily causes genital herpes. Both viruses are highly contagious and spread through close contact. While there's no cure, antiviral medications can manage symptoms and reduce transmission. The prevalence of HSV-2 varies globally and is influenced by factors such as geographic location, gender, and sexual behavior. The virus can cause a wide range of symptoms depending on the infection site and the individual's immune system. HSV can interact with various bacterial species to influence the development and progression of disease. For example, it can exacerbate periodontal disease by creating conditions favorable for bacterial growth or increase the risk of acquiring bacterial infections such as Staphylococcus aureus and Acinetobacter baumannii. Conversely, some bacteria, like Lactobacillus crispatus, can inhibit HSV infection. Additionally, HSV can interact with bacteria in specific disease contexts, such as increasing the severity of ventilator-associated pneumonia or facilitating bacterial urinary tract infections. Moreover, Bacterial vaginosis is associated with an increased risk of HSV-2 acquisition. Overall, this review underscores the necessity for ongoing research into viral-bacterial interactions, particularly focusing on HSV, to enhance our understanding of disease pathogenesis and improve therapeutic and public health strategies.

About the authors

Mohammad Hassan Kalantar Neyestanaki

Arak University of Medical Sciences, Arak, Iran

Email: mohakani@yahoo.com
ORCID iD: 0000-0001-9273-7584

Medical doctor, Doctor, department of Medicine, Arak University of Medical Sciences, Arak, Iran

Иран, Mohammad Hassan Kalantar Neyestanaki, Department of medical Sciences, arak university of medical Sciences, Basij Blvd, Arak, Markazi province, Iran, E-mail: Mohakani@yahoo.com, Tel: +989199856863.

Aida Mehdipour

Qom University of Medical sciences, Qom, Iran

Author for correspondence.
Email: mkalantar1998@gmail.com
ORCID iD: 0000-0002-1456-4267

pediatric dentistry specialist, Associate professor, Cellular and Molecular Research Center, Qom University of Medical sciences, Qom, Iran; Pediatric Dentistry Department, Dental Faculty, Qom University of Medical Sciences, Qom, Iran

Иран

References

  1. Almand EA, Moore MD, Jaykus LA. Virus-Bacteria Interactions: An Emerging Topic in Human Infection. Viruses. 2017 Mar 21;9(3):58. doi: 10.3390/v9030058. PMID: 28335562; PMCID: PMC5371813.
  2. Bakaletz LO. Viral-bacterial co-infections in the respiratory tract. Curr Opin Microbiol. 2017 Feb;35:30-35. doi: 10.1016/j.mib.2016.11.003. Epub 2016 Dec 7. PMID: 27940028; PMCID: PMC7108227.
  3. Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 9. Philadelphia: Elsevier; 2020. pp. 2753–2758.
  4. Birkmann A, Zimmermann H. HSV antivirals - current and future treatment options. Curr Opin Virol. 2016 Jun;18:9-13. doi: 10.1016/j.coviro.2016.01.013. Epub 2016 Feb 19. PMID: 26897058.
  5. Bosch AA, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013 Jan;9(1):e1003057. doi: 10.1371/journal.ppat.1003057. Epub 2013 Jan 10. PMID: 23326226; PMCID: PMC3542149.
  6. Bouza E, Giannella M, Torres MV, Catalán P, Sánchez-Carrillo C, Hernandez RI, Muñoz P; Gregorio Marañón Task Force for Pneumonia. Herpes simplex virus: a marker of severity in bacterial ventilator-associated pneumonia. J Crit Care. 2011 Aug;26(4):432.e1-6. doi: 10.1016/j.jcrc.2010.10.008. Epub 2010 Dec 3. PMID: 21129912.
  7. Casto AM, Roychoudhury P, Xie H, Selke S, Perchetti GA, Wofford H, Huang ML, Verjans GMGM, Gottlieb GS, Wald A, Jerome KR, Koelle DM, Johnston C, Greninger AL. Large, Stable, Contemporary Interspecies Recombination Events in Circulating Human Herpes Simplex Viruses. J Infect Dis. 2020 Mar 28;221(8):1271-1279. doi: 10.1093/infdis/jiz199. PMID: 31016321; PMCID: PMC7325804.
  8. Cherpes TL, Melan MA, Kant JA, Cosentino LA, Meyn LA, Hillier SL. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization. Clin Infect Dis. 2005 May 15;40(10):1422-8. doi: 10.1086/429622. Epub 2005 Mar 29. PMID: 15844064.
  9. Cole S. Herpes Simplex Virus: Epidemiology, Diagnosis, and Treatment. Nurs Clin North Am. 2020 Sep;55(3):337-345. doi: 10.1016/j.cnur.2020.05.004. Epub 2020 Jul 15. PMID: 32762854.
  10. Contreras A, Slots J. Herpesviruses in human periodontal disease. J Periodontal Res. 2000 Feb;35(1):3-16. doi: 10.1034/j.1600-0765.2000.035001003.x. PMID: 10791704.
  11. Dai L, DeFee MR, Cao Y, Wen J, Wen X, Noverr MC, Qin Z. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from periodontal pathogenic bacteria facilitate oncogenic herpesvirus infection within primary oral cells. PLoS One. 2014 Jun 27;9(6):e101326. doi: 10.1371/journal.pone.0101326. PMID: 24971655; PMCID: PMC4074159.
  12. Esber A, Vicetti Miguel RD, Cherpes TL, Klebanoff MA, Gallo MF, Turner AN. Risk of Bacterial Vaginosis Among Women With Herpes Simplex Virus Type 2 Infection: A Systematic Review and Meta-analysis. J Infect Dis. 2015 Jul 1;212(1):8-17. doi: 10.1093/infdis/jiv017. Epub 2015 Jan 14. PMID: 25589333.
  13. Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol. 2007 Nov;57(5):737-63; quiz 764-6. doi: 10.1016/j.jaad.2007.06.027. PMID: 17939933.
  14. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS. 2006 Jan 2;20(1):73-83. doi: 10.1097/01.aids.0000198081.09337.a7. PMID: 16327322.
  15. Gleason CA, Sawyer T, editors. Avery’s diseases of the newborn. eleventh ed. Philadelphia: Elsevier; 2024. p. 675–702. URL: https://www.sciencedirect.com/science/article/pii/B9780323828239000982.
  16. Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000. 2015 Oct;69(1):46-67. doi: 10.1111/prd.12094. PMID: 26252401.
  17. Hedlund M, Aschenbrenner LM, Jensen K, Larson JL, Fang F. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J Infect Dis. 2010 Apr 1;201(7):1007-15. doi: 10.1086/651170. PMID: 20170378; PMCID: PMC2874251.
  18. Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016 Jun 3;34(26):2948-2952. doi: 10.1016/j.vaccine.2015.12.076. Epub 2016 Mar 11. PMID: 26973067.
  19. Kamma JJ, Contreras A, Slots J. Herpes viruses and periodontopathic bacteria in early-onset periodontitis. J Clin Periodontol. 2001 Sep;28(9):879-85. doi: 10.1034/j.1600-051x.2001.028009879.x. PMID: 11493359.
  20. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, Golovkina TV. Successful transmission of a retrovirus depends on the commensal microbiota. Science. 2011 Oct 14;334(6053):245-9. doi: 10.1126/science.1210718. PMID: 21998394; PMCID: PMC3519937.
  21. Kash JC, Taubenberger JK. The role of viral, host, and secondary bacterial factors in influenza pathogenesis. Am J Pathol. 2015 Jun;185(6):1528-36. doi: 10.1016/j.ajpath.2014.08.030. Epub 2015 Mar 5. PMID: 25747532; PMCID: PMC4450310.
  22. Kc R, Shukla SD, Walters EH, O'Toole RF. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. Microbiology (Reading). 2017 Apr;163(4):421-430. doi: 10.1099/mic.0.000434. Epub 2017 Apr 6. PMID: 28113047.
  23. Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. Curr Opin Microbiol. 2013 Apr;16(2):221-7. doi: 10.1016/j.mib.2013.03.009. Epub 2013 Apr 15. PMID: 23597788; PMCID: PMC5695238.
  24. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science. 2011 Oct 14;334(6053):249-52. doi: 10.1126/science.1211057. PMID: 21998395; PMCID: PMC3222156.
  25. Looker KJ, Elmes JAR, Gottlieb SL, Schiffer JT, Vickerman P, Turner KME, Boily MC. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis. 2017 Dec;17(12):1303-1316. doi: 10.1016/S1473-3099(17)30405-X. Epub 2017 Aug 23. PMID: 28843576; PMCID: PMC5700807.
  26. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012 Sep 13;489(7415):220-30. doi: 10.1038/nature11550. PMID: 22972295; PMCID: PMC3577372.
  27. Manna S, Baindara P, Mandal SM. Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. J Infect Public Health. 2020 Oct;13(10):1397-1404. doi: 10.1016/j.jiph.2020.07.003. Epub 2020 Jul 14. PMID: 32712106; PMCID: PMC7359806.
  28. Meier AF, Tobler K, Michaelsen K, Vogt B, Henckaerts E, Fraefel C. Herpes Simplex Virus 1 Coinfection Modifies Adeno-associated Virus Genome End Recombination. J Virol. 2021 Jun 10;95(13):e0048621. doi: 10.1128/JVI.00486-21. Epub 2021 Jun 10. PMID: 33853961; PMCID: PMC8315985.
  29. Moore MD, Jaykus LA. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses. 2018 Feb 2;10(2):61. doi: 10.3390/v10020061. PMID: 29393885; PMCID: PMC5850368.
  30. Mousavi E, Makvandi M, Teimoori A, Ataei A, Ghafari S, Samarbaf-Zadeh A. Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines. J Chin Med Assoc. 2018 Mar;81(3):262-267. doi: 10.1016/j.jcma.2017.07.010. Epub 2017 Oct 13. PMID: 29037754.
  31. Neu U, Mainou BA. Virus interactions with bacteria: Partners in the infectious dance. PLoS Pathog. 2020 Feb 11;16(2):e1008234. doi: 10.1371/journal.ppat.1008234. PMID: 32045465; PMCID: PMC7012391.
  32. O'Toole RF, Shukla SD, Walters EH. Does upregulated host cell receptor expression provide a link between bacterial adhesion and chronic respiratory disease? J Transl Med. 2016 Oct 26;14(1):304. doi: 10.1186/s12967-016-1063-x. PMID: 27782846; PMCID: PMC5080759.
  33. Oliveira de Almeida M, Carvalho R, Figueira Aburjaile F, Malcher Miranda F, Canário Cerqueira J, Brenig B, Ghosh P, Ramos R, Kato RB, de Castro Soares S, Silva A, Azevedo V, Canário Viana MV. Characterization of the first vaginal Lactobacillus crispatus genomes isolated in Brazil. PeerJ. 2021 Mar 10;9:e11079. doi: 10.7717/peerj.11079. PMID: 33854845; PMCID: PMC7955673.
  34. Petti S, Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis. 2019 Nov;25(8):1850-1865. doi: 10.1111/odi.13234. Epub 2019 Nov 27. PMID: 31733122.
  35. Rice SA. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses. 2021 Nov 30;13(12):2395. doi: 10.3390/v13122395. PMID: 34960664; PMCID: PMC8704881.
  36. Robledo Gonzalez L, Tat RP, Greaves JC, Robinson CM. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses. 2023 Dec 13;15(12):2415. doi: 10.3390/v15122415. PMID: 38140656; PMCID: PMC10747402.
  37. Rodrigues PM, Teixeira AL, Kustner EC, Medeiros R. Are herpes virus associated to aggressive periodontitis? A review of literature. J Oral Maxillofac Pathol. 2015 Sep-Dec;19(3):348-55. doi: 10.4103/0973-029X.174621. PMID: 26980964; PMCID: PMC4774289.
  38. Rossi GA, Fanous H, Colin AA. Viral strategies predisposing to respiratory bacterial superinfections. Pediatr Pulmonol. 2020 Apr;55(4):1061-1073. doi: 10.1002/ppul.24699. Epub 2020 Feb 21. PMID: 32084305.
  39. Said MS, Tirthani E, Lesho E. Enterococcus Infections. 2024 Feb 12. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. PMID: 33620836.
  40. Sajjan U, Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med. 2008 Dec 15;178(12):1271-81. doi: 10.1164/rccm.200801-136OC. Epub 2008 Sep 11. PMID: 18787220; PMCID: PMC2599868.
  41. Slots J. Interactions between Herpesviruses and Bacteria in Human Periodontal Disease. In: Brogden KA, Guthmiller JM, editors. Polymicrobial Diseases. Washington (DC): ASM Press; 2002. Chapter 16. URL: https://www.ncbi.nlm.nih.gov/books/NBK2484/.
  42. Smith CB, Golden C, Klauber MR, Kanner R, Renzetti A. Interactions between viruses and bacteria in patients with chronic bronchitis. J Infect Dis. 1976 Dec;134(6):552-61. doi: 10.1093/infdis/134.6.552. PMID: 12235; PMCID: PMC7109971.
  43. Sommer F, Bäckhed F. The gut microbiota--masters of host development and physiology. Nat Rev Microbiol. 2013 Apr;11(4):227-38. doi: 10.1038/nrmicro2974. Epub 2013 Feb 25. PMID: 23435359.
  44. Steed AL, Stappenbeck TS. Role of viruses and bacteria-virus interactions in autoimmunity. Curr Opin Immunol. 2014 Dec;31:102-7. doi: 10.1016/j.coi.2014.10.006. Epub 2014 Oct 27. PMID: 25459001; PMCID: PMC4254666.
  45. Superti F, Longhi C, Di Biase AM, Tinari A, Marchetti M, Pisani S, Gallinelli C, Chiarini F, Seganti L. Herpes simplex virus type 2 modulates the susceptibility of human bladder cells to uropathogenic bacteria. Med Microbiol Immunol. 2001 Sep;189(4):201-8. doi: 10.1007/s004300100067. PMID: 11599790.
  46. Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers. 2021 Oct 2;9(4):1943274. doi: 10.1080/21688370.2021.1943274. Epub 2021 Jul 9. PMID: 34241579; PMCID: PMC8794520.
  47. Van Der Sluijs KF, van der Poll T, Lutter R, Juffermans NP, Schultz MJ. Bench-to-bedside review: bacterial pneumonia with influenza - pathogenesis and clinical implications. Crit Care. 2010;14(2):219. doi: 10.1186/cc8893. Epub 2010 Apr 19. PMID: 20459593; PMCID: PMC2887122. Critical care; 14: 1-8.
  48. Verkaik NJ, Nguyen DT, de Vogel CP, Moll HA, Verbrugh HA, Jaddoe VW, Hofman A, van Wamel WJ, van den Hoogen BG, Buijs-Offerman RM, Ludlow M, de Witte L, Osterhaus AD, van Belkum A, de Swart RL. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect. 2011 Dec;17(12):1840-4. doi: 10.1111/j.1469-0691.2011.03480.x. Epub 2011 Aug 30. PMID: 21883660.
  49. Wachsman MB, Castilla V, de Ruiz Holgado AP, de Torres RA, Sesma F, Coto CE. Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res. 2003 Mar;58(1):17-24. doi: 10.1016/s0166-3542(02)00099-2. PMID: 12719003.
  50. Wertheim JO, Hostager R, Ryu D, Merkel K, Angedakin S, Arandjelovic M, Ayimisin EA, Babweteera F, Bessone M, Brun-Jeffery KJ, Dieguez P, Eckardt W, Fruth B, Herbinger I, Jones S, Kuehl H, Langergraber KE, Lee K, Madinda NF, Metzger S, Ormsby LJ, Robbins MM, Sommer V, Stoinski T, Wessling EG, Wittig RM, Yuh YG, Leendertz FH, Calvignac-Spencer S. Discovery of Novel Herpes Simplexviruses in Wild Gorillas, Bonobos, and Chimpanzees Supports Zoonotic Origin of HSV-2. Mol Biol Evol. 2021 Jun 25;38(7):2818-2830. doi: 10.1093/molbev/msab072. PMID: 33720357; PMCID: PMC8233514.
  51. Whitley RJ. Herpes simplex virus infection. Semin Pediatr Infect Dis. 2002 Jan;13(1):6-11. doi: 10.1053/spid.2002.29752. PMID: 12118847.
  52. Wiertsema SP, Chidlow GR, Kirkham LA, Corscadden KJ, Mowe EN, Vijayasekaran S, Coates HL, Harnett GB, Richmond PC. High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media. J Med Virol. 2011 Nov;83(11):2008-17. doi: 10.1002/jmv.22221. PMID: 21915878; PMCID: PMC7166877.
  53. Zhu S, Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence. 2021 Dec;12(1):2670-2702. doi: 10.1080/21505594.2021.1982373. PMID: 34676800; PMCID: PMC8923070.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) kalantar neyestanaki m., Mehdipour A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies