Relationship between type III secretion toxins, biofilm formation, and antibiotic resistance in clinical Pseudomonas aeruginosa isolates

Cover Page


Cite item

Full Text

Abstract

Background and aim. Pseudomonas aeruginosa is considered as a notorious pathogen due to its multidrug resistance and life threatening infections. We investigated the relationship between type III secretion toxins, biofilm formation, and antibiotic resistance among clinical P. aeruginosa isolates. Methods. A total of 70 genetically distinct clinical P. aeruginosa isolates were characterized for antibiotic resistance by disk diffusion assay. Biofilm formation was evaluated by microtiter plate method and presence of four exo genes (exoS, exoU, exoT and exoY) was investigated by PCR. A p-value < 0.05 was regarded statistically significant. Results. The most effective antibiotics were Meropenem and Piperacillin. Multidrug resistance was more prevalent in the ciprofloxacin-resistant isolates than in the susceptible isolates. The most frequently identified exo was exoS (37.1%). Genotype exoS/exoT was found in 4 isolates, while genotype exoU/exoT was not found. Prevalence of exoS was generally higher in the susceptible isolates than in the resistant isolates. A significant association was found between the formation of strong biofilm and resistance to antibiotics (p < 0.05). Prevalence of exoY and exoU was higher in the non-strong biofilm producers compared to the strong biofilm producers. Conclusion. Our study revealed formation of strong biofilm along with antibiotic resistance and the presence of exo genes in P. aeruginosa isolates. Knowledge of virulence gene profiles and biofilm formation may be useful in deciding appropriate treatment.

About the authors

S. Derakhshan

Kurdistan University of Medical Sciences

Author for correspondence.
Email: s.derakhshan@muk.ac.ir

Safoura Derakhshan - PhD, Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences.

Sanandaj.

Phone: +98 87 33668504.

Иран

A. Rezaee

Kurdistan University of Medical Sciences

Email: alirezaei2610@gmail.com

Ali Rezaee - MSc, Student Research Committee, Kurdistan University of Medical Sciences.

Sanandaj.

Иран

Sh. Mohammadi

Kurdistan University of Medical Sciences

Email: shadiehmohammadi@yahoo.com

Shadieh Mohammadi - PhD, Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences.

Sanandaj.

Иран

References

  1. Agnello M., Finkel S.E., Wong-Beringer A. Fitness cost of fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa differs by type III secretion genotype. Front Microbiol., 2016, vol. 7: 1591. doi: 10.3389/fmicb.2016.01591
  2. Al Dawodeyah H.Y., Obeidat N., Abu-Qatouseh L.F., Shehabi A.A. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs, 2018, vol. 8, no. 1, pp. 31–40. doi: 10.18683/germs.2018.1130
  3. Alonso B., Fernández-Barat L., Di Domenico E.G., Marín M., Cercenado E., Merino I., de Pablos M., Muñoz P., Guembe M. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect. Dis., 2020, vol. 20, no. 1: 909. doi: 10.1186/s12879-020-05534-1
  4. Al-Wrafy F., Brzozowska E., Górska S., Gamian A. Pathogenic factors of Pseudomonas aeruginosa-the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw. (Online), 2017, vol. 71, pp. 78–91. doi: 10.5604/01.3001.0010.3792
  5. Azimi S., Kafil H.S., Baghi H.B., Shokrian S., Najaf K., Asgharzadeh M., Yousefi M., Shahrivar F., Aghazadeh M. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg. Infect. Control, 2016, vol. 11: Doc04. doi: 10.3205/dgkh000264
  6. Badamchi A., Masoumi H., Javadinia S., Asgarian R., Tabatabaee A. Molecular detection of six virulence genes in Pseudomonas aeruginosa isolates detected in children with urinary tract infection. Microb. Pathog., 2017, vol. 107: 44–47. doi: 10.1016/j.micpath.2017.03.009
  7. Bogiel T., Depka D., Rzepka M., Kwiecińska-Piróg J., Gospodarek-Komkowska E. Prevalence of the genes associated with biofilm and toxins synthesis amongst the Pseudomonas aeruginosa clinical strains. Antibiotics, 2021, vol. 10, no. 3: 241. doi: 10.3390/antibiotics10030241
  8. Choy M.H., Stapleton F., Willcox M.D., Zhu H. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-and non-contact lens-related keratitis. J. Med. Microbiol., 2008, vol. 57, no. 12, pp. 539–1546. doi: 10.1099/jmm.0.2008/003723-0
  9. CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne: CLSI, 2019. 282 p.
  10. Engel J., Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol., 2009, vol. 12, no. 1, pp. 61–66. doi: 10.1016/j.mib.2008.12.007
  11. Fazeli N., Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red. Crescent Med. J., 2014, vol. 16, no. 10: e15722. doi: 10.5812/ircmj.15722
  12. Haghi F., Zeighami H., Monazami A., Toutouchi F., Nazaralian S., Naderi G. Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb. Pathog., 2018, vol. 115, pp. 251–256. doi: 10.1016/j.micpath.2017.12.052
  13. Horna G., Quezada K., Ramos S., Mosqueda N., Rubio M., Guerra H., Ruiz J. Specific type IV pili groups in clinical isolates of Pseudomonas aeruginosa. Int. Microbiol., 2019, vol. 22, no. 1, pp. 31–41. doi: 10.1007/s10123-018-00035-3
  14. Hsu D.I., Okamoto M.P., Murthy R., Wong-Beringer A. Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J. Antimicrob. Chemother., 2005, vol. 55, no. 4, pp. 535–541. doi: 10.1093/jac/dki026
  15. Khare P., Raj V., Chandra S., Agarwal S. Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. J. Forensic Dent. Sci., 2014, vol. 6, no. 2, pp. 81–85. doi: 10.4103/0975-1475.132529
  16. Khoramrooz S.S., Rahbari N., Parhizgari N., Sharifi A., Yazdanpanah M., Gharibpour F., Rabani S.M., Malekhosseini S.A., Marashifard M. Frequency of type III secretion system cytotoxins-encoding genes among Pseudomonas aeruginosa isolated from burn patients. J. Adv. Med. Biomed Res., 2015, vol. 23, no. 99, pp. 52–63.
  17. Kulasekara B.R., Kulasekara H.D., Wolfgang M.C., Stevens L., Frank D.W., Lory S. Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa. J. Bacteriol., 2006, vol. 188, no. 11, pp. 4037–4050. doi: 10.1128/JB.02000-05
  18. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. J., 2012, vol. 18, no. 3, pp. 268–281. doi: 10.1111/j.1469-0691.2011.03570.x
  19. Mohamad M., Rostami S., Zamanzad B., Gholipour A., Deris F. Detection of exotoxins and antimicrobial susceptibility pattern in clinical Pseudomonas aeruginosa Isolates. Avicenna J. Clin. Microbiol. Infect., 2018, vol. 5, no. 2, pp. 36–40. doi: 10.34172/ajcmi.2018.07
  20. Moradali M.F., Ghods S., Rehm B.H. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol., 2017, vol. 7: 39. doi: 10.3389/fcimb.2017.00039
  21. Newman J.W., Floyd R.V., Fothergill J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 2017, vol. 364, no. 15: fnx124. doi: 10.1093/femsle/fnx124
  22. O’Toole G.A. Microtiter dish biofilm formation assay. J. Vis. Exp., 2011, vol. 47: 2437. doi: 10.3791/2437
  23. Pobiega M., Chmielarczyk A., Kozioł J., Pomorska-Wesołowska M., Ziolkowski G., Romaniszyn D., Bulanda M., Wojkowska-Mach J. Virulence factors genes and drug resistance in Pseudomonas aeruginosa strains derived from different forms of community and healthcare associated infections. Postepy Hig. Med. Dosw., 2018, vol. 72, pp. 751–759. doi: 10.5604/01.3001.0012.2426
  24. Saleem S., Bokhari H. Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan. J. Infect. Public Health, 2020, vol. 13, no. 4, pp. 598–605. doi: 10.1016/j.jiph.2019.08.019
  25. Samad A., Ahmed T., Rahim A., Khalil A., Ali I. Antimicrobial susceptibility patterns of clinical isolates of Pseudomonas aeruginosa isolated from patients of respiratory tract infections in a Tertiary Care Hospital, Peshawar. Pak. J. Med. Sci., 2017, vol. 33, no. 3, pp. 670–674. doi: 10.12669/pjms.333.12416
  26. Shariff M., Chhabra S.K., Rahman M.U. Similar virulence properties of infection and colonization associated Pseudomonas aeruginosa. J. Med. Microbiol., 2017, vol. 66, no. 10, pp. 1489–1498. doi: 10.1099/jmm.0.000569
  27. Stepanović S., Vuković D., Hola V., Bonaventura G.D., Djukić S., Ćirković I., Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 2007, vol. 115, no. 8, pp. 891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x
  28. Strateva T., Markova B., Ivanova D., Mitov I. Distribution of the type III effector proteins-encoding genes among nosocomial Pseudomonas aeruginosa isolates from Bulgaria. Ann. Microbiol., 2010, vol. 60, pp. 503–509. doi: 10.1007/s13213-010-0079-3
  29. Strateva T., Mitov I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann. Microbiol., 2011, vol. 61, pp. 717–732. doi: 10.1007/s13213-011-0273-y
  30. Subedi D., Vijay A.K., Kohli G.S., Rice S.A., Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One, 2018, vol. 13, no. 9: e0204936. doi: 10.1371/journal.pone.0204936
  31. Tielen P., Narten M., Rosin N., Biegler I., Haddad I., Hogardt M., Neubauer R., Schobert M., Wiehlmann L., Jahn D. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int. J. Med. Microbiol., 2011, vol. 301, no. 4, pp. 282–292. doi: 10.1016/j.ijmm.2010.10.005
  32. Tille P. Bailey & Scott’s diagnostic microbiology. St. Louis County: Elsevier Mosby, 2015. 1056 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Derakhshan S., Rezaee A., Mohammadi S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies