Взаимосвязь между токсинами III типа секреции, образованием биопленки и антибиотической резистентностью в клинических изолятах Pseudomonas aeruginosa

Обложка


Цитировать

Полный текст

Аннотация

Актуальность и цель. Pseudomonas aeruginosa считается опасным патогеном из-за своей множественной лекарственной устойчивости и вызываемых им инфекций, представляющих угрозу для жизни. Мы исследовали взаимосвязь между токсинами секреции III типа, образованием биопленок и устойчивостью к антибиотикам среди клинических изолятов P. aeruginosa. Методы. Диско-диффузионный анализ был использован для оценки устойчивости к антибиотикам у 70 генетически различных клинических изолятов P. aeruginosa. Образование биопленок оценивали в микротитрационном планшете, а наличие четырех экзогенов (exoS, exoU, exoT и exoY) исследовали с помощью полимеразной цепной реакции. Значение p < 0,05 считалось статистически значимым. Результаты. Наиболее эффективными антибиотиками оказались меропенем и пиперациллин. Множественная лекарственная устойчивость была более распространена у устойчивых, чем у чувствительных к ципрофлоксацину изолятов. Наиболее часто выявляемым экзоном был exoS (37,1%). Генотип exoS/exoT обнаружен у 4 изолятов, генотип exoU/exoT не выявлялся. Распространенность exoS, как правило, была выше у чувствительных изолятов, чем у устойчивых. Была обнаружена достоверная связь между образованием прочной биопленки и устойчивостью к антибиотикам (p < 0,05). Распространенность exoY и exoU была выше у продуцентов непрочных биопленок, чем у продуцентов прочных биопленок. Заключение. Наше исследование, наряду с устойчивостью к антибиотикам и наличием экзогенов, выявило у изолятов P. aeruginosa способность к формированию прочной биопленки. Знание профиля генов вирулентности и образования биопленок может быть полезно при выборе соответствующего лечения.

Об авторах

С. Деракшан

Курдский университет медицинских наук

Автор, ответственный за переписку.
Email: s.derakhshan@muk.ac.ir

Дерахшан Сафура – кандидат наук, Центр исследования печени и органов пищеварения, Курдский университет медицинских наук.

Сенендедж.

Тел.: +98 87 33668504.

Иран

Ш. Мохаммади

Курдский университет медицинских наук

Email: alirezaei2610@gmail.com

Кандидат наук, Исследовательский центр зоонозов, Научно-исследовательский институт развития здравоохранения, Курдский университет медицинских наук.

Сенендедж.

Иран

А. Резайи

Курдский университет медицинских наук

Email: shadiehmohammadi@yahoo.com

Магистр наук, студенческий научно-исследовательский комитет, Курдский университет медицинских наук.

Сенендедж.

Иран

Список литературы

  1. Agnello M., Finkel S.E., Wong-Beringer A. Fitness cost of fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa differs by type III secretion genotype. Front Microbiol., 2016, vol. 7: 1591. doi: 10.3389/fmicb.2016.01591
  2. Al Dawodeyah H.Y., Obeidat N., Abu-Qatouseh L.F., Shehabi A.A. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs, 2018, vol. 8, no. 1, pp. 31–40. doi: 10.18683/germs.2018.1130
  3. Alonso B., Fernández-Barat L., Di Domenico E.G., Marín M., Cercenado E., Merino I., de Pablos M., Muñoz P., Guembe M. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect. Dis., 2020, vol. 20, no. 1: 909. doi: 10.1186/s12879-020-05534-1
  4. Al-Wrafy F., Brzozowska E., Górska S., Gamian A. Pathogenic factors of Pseudomonas aeruginosa-the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig. Med. Dosw. (Online), 2017, vol. 71, pp. 78–91. doi: 10.5604/01.3001.0010.3792
  5. Azimi S., Kafil H.S., Baghi H.B., Shokrian S., Najaf K., Asgharzadeh M., Yousefi M., Shahrivar F., Aghazadeh M. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg. Infect. Control, 2016, vol. 11: Doc04. doi: 10.3205/dgkh000264
  6. Badamchi A., Masoumi H., Javadinia S., Asgarian R., Tabatabaee A. Molecular detection of six virulence genes in Pseudomonas aeruginosa isolates detected in children with urinary tract infection. Microb. Pathog., 2017, vol. 107: 44–47. doi: 10.1016/j.micpath.2017.03.009
  7. Bogiel T., Depka D., Rzepka M., Kwiecińska-Piróg J., Gospodarek-Komkowska E. Prevalence of the genes associated with biofilm and toxins synthesis amongst the Pseudomonas aeruginosa clinical strains. Antibiotics, 2021, vol. 10, no. 3: 241. doi: 10.3390/antibiotics10030241
  8. Choy M.H., Stapleton F., Willcox M.D., Zhu H. Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-and non-contact lens-related keratitis. J. Med. Microbiol., 2008, vol. 57, no. 12, pp. 539–1546. doi: 10.1099/jmm.0.2008/003723-0
  9. CLSI. Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne: CLSI, 2019. 282 p.
  10. Engel J., Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol., 2009, vol. 12, no. 1, pp. 61–66. doi: 10.1016/j.mib.2008.12.007
  11. Fazeli N., Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red. Crescent Med. J., 2014, vol. 16, no. 10: e15722. doi: 10.5812/ircmj.15722
  12. Haghi F., Zeighami H., Monazami A., Toutouchi F., Nazaralian S., Naderi G. Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb. Pathog., 2018, vol. 115, pp. 251–256. doi: 10.1016/j.micpath.2017.12.052
  13. Horna G., Quezada K., Ramos S., Mosqueda N., Rubio M., Guerra H., Ruiz J. Specific type IV pili groups in clinical isolates of Pseudomonas aeruginosa. Int. Microbiol., 2019, vol. 22, no. 1, pp. 31–41. doi: 10.1007/s10123-018-00035-3
  14. Hsu D.I., Okamoto M.P., Murthy R., Wong-Beringer A. Fluoroquinolone-resistant Pseudomonas aeruginosa: risk factors for acquisition and impact on outcomes. J. Antimicrob. Chemother., 2005, vol. 55, no. 4, pp. 535–541. doi: 10.1093/jac/dki026
  15. Khare P., Raj V., Chandra S., Agarwal S. Quantitative and qualitative assessment of DNA extracted from saliva for its use in forensic identification. J. Forensic Dent. Sci., 2014, vol. 6, no. 2, pp. 81–85. doi: 10.4103/0975-1475.132529
  16. Khoramrooz S.S., Rahbari N., Parhizgari N., Sharifi A., Yazdanpanah M., Gharibpour F., Rabani S.M., Malekhosseini S.A., Marashifard M. Frequency of type III secretion system cytotoxins-encoding genes among Pseudomonas aeruginosa isolated from burn patients. J. Adv. Med. Biomed Res., 2015, vol. 23, no. 99, pp. 52–63.
  17. Kulasekara B.R., Kulasekara H.D., Wolfgang M.C., Stevens L., Frank D.W., Lory S. Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa. J. Bacteriol., 2006, vol. 188, no. 11, pp. 4037–4050. doi: 10.1128/JB.02000-05
  18. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. J., 2012, vol. 18, no. 3, pp. 268–281. doi: 10.1111/j.1469-0691.2011.03570.x
  19. Mohamad M., Rostami S., Zamanzad B., Gholipour A., Deris F. Detection of exotoxins and antimicrobial susceptibility pattern in clinical Pseudomonas aeruginosa Isolates. Avicenna J. Clin. Microbiol. Infect., 2018, vol. 5, no. 2, pp. 36–40. doi: 10.34172/ajcmi.2018.07
  20. Moradali M.F., Ghods S., Rehm B.H. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol., 2017, vol. 7: 39. doi: 10.3389/fcimb.2017.00039
  21. Newman J.W., Floyd R.V., Fothergill J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiology Letters, 2017, vol. 364, no. 15: fnx124. doi: 10.1093/femsle/fnx124
  22. O’Toole G.A. Microtiter dish biofilm formation assay. J. Vis. Exp., 2011, vol. 47: 2437. doi: 10.3791/2437
  23. Pobiega M., Chmielarczyk A., Kozioł J., Pomorska-Wesołowska M., Ziolkowski G., Romaniszyn D., Bulanda M., Wojkowska-Mach J. Virulence factors genes and drug resistance in Pseudomonas aeruginosa strains derived from different forms of community and healthcare associated infections. Postepy Hig. Med. Dosw., 2018, vol. 72, pp. 751–759. doi: 10.5604/01.3001.0012.2426
  24. Saleem S., Bokhari H. Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan. J. Infect. Public Health, 2020, vol. 13, no. 4, pp. 598–605. doi: 10.1016/j.jiph.2019.08.019
  25. Samad A., Ahmed T., Rahim A., Khalil A., Ali I. Antimicrobial susceptibility patterns of clinical isolates of Pseudomonas aeruginosa isolated from patients of respiratory tract infections in a Tertiary Care Hospital, Peshawar. Pak. J. Med. Sci., 2017, vol. 33, no. 3, pp. 670–674. doi: 10.12669/pjms.333.12416
  26. Shariff M., Chhabra S.K., Rahman M.U. Similar virulence properties of infection and colonization associated Pseudomonas aeruginosa. J. Med. Microbiol., 2017, vol. 66, no. 10, pp. 1489–1498. doi: 10.1099/jmm.0.000569
  27. Stepanović S., Vuković D., Hola V., Bonaventura G.D., Djukić S., Ćirković I., Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 2007, vol. 115, no. 8, pp. 891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x
  28. Strateva T., Markova B., Ivanova D., Mitov I. Distribution of the type III effector proteins-encoding genes among nosocomial Pseudomonas aeruginosa isolates from Bulgaria. Ann. Microbiol., 2010, vol. 60, pp. 503–509. doi: 10.1007/s13213-010-0079-3
  29. Strateva T., Mitov I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann. Microbiol., 2011, vol. 61, pp. 717–732. doi: 10.1007/s13213-011-0273-y
  30. Subedi D., Vijay A.K., Kohli G.S., Rice S.A., Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One, 2018, vol. 13, no. 9: e0204936. doi: 10.1371/journal.pone.0204936
  31. Tielen P., Narten M., Rosin N., Biegler I., Haddad I., Hogardt M., Neubauer R., Schobert M., Wiehlmann L., Jahn D. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int. J. Med. Microbiol., 2011, vol. 301, no. 4, pp. 282–292. doi: 10.1016/j.ijmm.2010.10.005
  32. Tille P. Bailey & Scott’s diagnostic microbiology. St. Louis County: Elsevier Mosby, 2015. 1056 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Деракшан С., Мохаммади Ш., Резайи А., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах