EPIDEMIC INFLUENZA VIRUS NUCLEOPROTEIN GENE INCORPORATED INTO VACCINE INFLUENZA VIRUS STRAIN GENOME TO OPTIMIZE SYSTEMIC AND LOCAL T-CELL IMMUNE RESPONSE AGAINST LIVE ATTENUATED INFLUENZA VACCINE



Cite item

Full Text

Abstract

Introduction: Optimization of the vaccine-induced T-cell repertoire is one of the strategies to expand the spectrum of protective potential for live attenuated influenza vaccine (LAIV). LAIV cross-protective properties can be improved by introducing the nucleoprotein (NP) gene derived from epidemic parental virus into vaccine strain genome, i.e. by replacing the classical 6:2 genome formula with 5:3. The main objective of the present study was to detail evaluation for virus-specific systemic and tissue-resident memory T-cells subsets in mice immunized with seasonal H1N1 LAIV of the genome formula 6:2 and 5:3. Materials and Methods: Two H1N1 LAIV strains with varying NP genes (LAIV 6:2 and LAIV 5:3) were generated using reverse genetics techniques. C57BL/6J mice were immunized intranasally with the vaccine candidates, twice, 3 weeks apart. Cells from the spleen and lung tissues were isolated 7 days after booster immunization to be stimulated with whole H1N1 influenza virus for assessing cytokine-producing memory CD44+CD62L- T-cells as well as expression of CD69 and CD103 surface markers using flow cytometry. Humoral murine serum immunity against H1N1 virus was assessed by ELISA. Results: The LAIV 5:3 vs. classical 6:2 vaccine strain carrying the epidemic parental NP gene induced significantly more pronounced humoral immune response against recent influenza virus. The group of mice immunized with LAIV 5:3 demonstrated higher levels of virus-specific CD4+ and CD8+ effector memory T cells (TEM) in the spleen, including a subset of polyfunctional (IFNγ+TNFα+IL-2+) CD4+ TEM, compared to LAIV 6:2 group. Virus-specific memory T cell levels in lung tissues after immunization with LAIV 5:3 vs. LAIV 6:2 also tended to increase, but no significant difference in stimulated tissue-resident CD69+CD103- and CD69+CD103+ T cells between the groups were found. Conclusion: Modification of the seasonal LAIV strain genome for updating its epitope composition allowed to enhance the virus-specific T-cell immune response both at systemic level and in lung tissues, thereby shoeing that the effectiveness of the vaccine against circulating influenza viruses can be potentially increased.

About the authors

Polina I. Prokopenko

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: pi.prokopenko@gmail.com

junior researcher, Department of Virology

Russian Federation

Ekaterina A. Stepanova

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: stepanova.ea@iemspb.ru

PhD, leading researcher

Russian Federation

Victoria A. Matyushenko

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: matyshenko@iemspb.ru

researcher

Russian Federation

Anna K. Chistyakova

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: anna.k.chistiakova@gmail.com

research assistant

Russian Federation

Arina D. Kostromitina

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: arina8goshina@gmail.com

research assistant, PhD student

Russian Federation

Tatiana S. Kotomina

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: kotomina@iemspb.ru

researcher

Russian Federation

Alexandra Y. Rak

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: rak.ay@iemspb.ru

PhD, senior researcher

Russian Federation

Artem A. Rubinstein

Department of Immunology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: arrubin6@mail.ru

junior researcher

Russian Federation

Igor V. Kudryavtsev

Department of Immunology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: kudryavtsev.iv@iemspb.ru

assistant professor, head of the laboratory of cellular immunology

Russian Federation

Vlada V. Novitskaya

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: novitskaya.vv@iemspb.ru

research assistant, PhD student

Russian Federation

Larisa G. Rudenko

Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

Email: rudenko.lg@iemspb.ru

Doctor of Medical Sciences, professor, head of the virology department

Russian Federation

Irina N. Isakova-Sivak

Отдел вирусологии им. А.А. Смородинцева ФГБНУ «ИЭМ», Санкт-Петербург, ул. Акад. Павлова, д.12.

Author for correspondence.
Email: isakova.sivak@iemspb.ru

Doctor of Biological Sciences, corresponding member of the Russian Academy of Sciences, head of the laboratory of immunology and prevention of viral infections

Russian Federation, Department of Virology, Institute of Experimental Medicine, Saint-Petersburg 12, Acad. Pavlov Street.

References

  1. Bodewes R., Geelhoed-Mieras M. M., Wrammert J., Ahmed R., Wilson P. C., Fouchier R. A., Osterhaus A. D., Rimmelzwaan G. F. In vitro assessment of the immunological significance of a human monoclonal antibody directed to the influenza a virus nucleoprotein. Clin Vaccine Immunol., 2013, vol. 20, no. 8., pp. 1333-7.
  2. Burel J. G., Apte S. H., Groves P. L., McCarthy J. S., Doolan D. L. Polyfunctional and IFN-γ monofunctional human CD4(+) T cell populations are molecularly distinct. JCI Insight, 2017, vol. 2, no 3, p. e87499.
  3. Cibrian D., Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol., 2017, vol. 47, no. 6, pp. 946-953.
  4. Deiss R. G., Arnold J. C., Chen W. J., Echols S., Fairchok M. P., Schofield C., Danaher P. J., McDonough E., Ridore M., Mor D., Burgess T. H., Millar E. V. Vaccine-associated reduction in symptom severity among patients with influenza A/H3N2 disease. Vaccine, 2015, vol. 33, no. 51, pp. 7160-7167.
  5. Flynn J. A., Weber T., Cejas P. J., Cox K. S., Touch S., Austin L. A., Ou Y., Citron M. P., Luo B., Gindy M. E., Bahl K., Ciaramella G., Espeseth A. S., Zhang L. Characterization of humoral and cell-mediated immunity induced by mRNA vaccines expressing influenza hemagglutinin stem and nucleoprotein in mice and nonhuman primates. Vaccine, 2022, vol. 40, no. 32, pp. 4412-4423.
  6. Godoy P., Romero A., Soldevila N., Torner N., Jane M., Martinez A., Cayla J. A., Rius C., Dominguez A., Working Group on Surveillance of Severe Influenza Hospitalized Cases in C. Influenza vaccine effectiveness in reducing severe outcomes over six influenza seasons, a case-case analysis, Spain, 2010/11 to 2015/16. Euro Surveill., 2018, vol. 23, no. 43.
  7. Isakova-Sivak I., Stepanova E., Mezhenskaya D., Matyushenko V., Prokopenko P., Sychev I., Wong P. F., Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines, 2021, vol. 20, no. 9, pp. 1097-1112.
  8. Isakova-Sivak I., Korenkov D., Smolonogina T., Tretiak T., Donina S., Rekstin A., Naykhin A., Shcherbik S., Pearce N., Chen L. M., Bousse T., Rudenko L. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology, 2017, vol. 500, pp. 209-217.
  9. Iuliano A. D., Roguski K. M., Chang H. H., Muscatello D. J., Palekar R., Tempia S., Cohen C., Gran J. M., Schanzer D., Cowling B. J., Wu P., Kyncl J., Ang L. W., Park M., Redlberger-Fritz M., Yu H., Espenhain L., Krishnan A., Emukule G., van Asten L., Pereira da Silva S., Aungkulanon S., Buchholz U., Widdowson M. A., Bresee J. S. Global Seasonal Influenza-associated Mortality Collaborator Network. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet, 2018, vol. 391, no. 10127, pp. 1285-1300.
  10. Jegaskanda S., Co M. D. T., Cruz J., Subbarao K., Ennis F. A., Terajima M. Induction of H7N9-Cross-Reactive Antibody-Dependent Cellular Cytotoxicity Antibodies by Human Seasonal Influenza A Viruses that are Directed Toward the Nucleoprotein. J Infect Dis., 2017, vol. 215, no. 5, pp. 818-823.
  11. Kang S., Brown H. M., Hwang S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw., 2018, vol. 18, no. 5, p. e33.
  12. Korenkov D. A., Laurie K. L., Reading P. C., Carolan L. A., Chan K. F., Isakova S., II, Smolonogina T. A., Subbarao K., Barr I. G., Villanueva J., Shcherbik S., Bousse T., Rudenko L. G. Safety, immunogenicity and protection of A(H3N2) live attenuated influenza vaccines containing wild-type nucleoprotein in a ferret model. Infect Genet Evol., 2018, vol. 64, pp. 95-104.
  13. Lee Y.-T., Suarez-Ramirez J. E., Wu T., Redman J. M., Bouchard K., Hadley G. A., Cauley L. S. Environmental and antigen receptor-derived signals support sustained surveillance of the lungs by pathogen-specific cytotoxic T lymphocytes. Journal of Virology, 2011, vol. 85, no. 9, pp. 4085-4094.
  14. Mackay L. K., Braun A., Macleod B. L., Collins N., Tebartz C., Bedoui S., Carbone F. R., Gebhardt T. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. Journal of Immunology, 2015, vol. 194, no. 5, pp. 2059-2063.
  15. Makedonas G., Betts M. R. Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin Immunopathol., 2006, vol. 28, no. 3, pp. 209-19.
  16. Okoli G. N., Racovitan F., Abdulwahid T., Hyder S. K., Lansbury L., Righolt C. H., Mahmud S. M., Nguyen-Van-Tam J. S. Decline in Seasonal Influenza Vaccine Effectiveness With Vaccination Program Maturation: A Systematic Review and Meta-analysis. Open Forum Infect Dis., 2021, vol. 8, no. 3, p. ofab069.
  17. Osterholm M. T., Kelley N. S., Sommer A., Belongia E. A. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis., 2012, vol. 12, no. 1, pp. 36-44.
  18. Prokopenko P., Matyushenko V., Rak A., Stepanova E., Chistyakova A., Goshina A., Kudryavtsev I., Rudenko L., Isakova-Sivak I. Truncation of NS1 Protein Enhances T Cell-Mediated Cross-Protection of a Live Attenuated Influenza Vaccine Virus Expressing Wild-Type Nucleoprotein. Vaccines, 2023, vol. 11, no. 3, p. 501.
  19. Rak A., Isakova-Sivak I., Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines, 2023, vol. 11, no. 12, p. 1747.
  20. Reed L. J., Muench H. A simple method of estimating fifty percent endpoints. American Journal of Epidemiology, 1938, vol. 27, no. 3, pp. 493-497.
  21. Rekstin A., Isakova-Sivak I., Petukhova G., Korenkov D., Losev I., Smolonogina T., Tretiak T., Donina S., Shcherbik S., Bousse T., Rudenko L. Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. Biomed Res Int., 2017, vol. 2017, p. 9359276.
  22. Schmidt A., Lapuente D. T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses, 2021, vol. 13, no. 2, p. 199.
  23. Skon C. N., Lee J.-Y., Anderson K. G., Masopust D., Hogquist K. A., Jameson S. C. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 2013, vol. 14, no. 12, pp. 1285-1293.
  24. Szabo P. A., Miron M., Farber D. L. Location, location, location: Tissue resident memory T cells in mice and humans. Sci Immunol., 2019, vol. 4, no. 34.
  25. Takamura S. Persistence in Temporary Lung Niches: A Survival Strategy of Lung-Resident Memory CD8(+) T Cells. Viral Immunol., 2017, vol. 30, no. 6, pp. 438-450.
  26. Topham D. J., Reilly E. C. Tissue-Resident Memory CD8(+) T Cells: From Phenotype to Function. Front Immunol., 2018, vol. 9, p. 515.
  27. Vanderven H. A., Ana-Sosa-Batiz F., Jegaskanda S., Rockman S., Laurie K., Barr I., Chen W., Wines B., Hogarth P. M., Lambe T., Gilbert S. C., Parsons M. S., Kent S. J. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine, 2016, vol. 8, pp. 277-290.
  28. Virelizier J. L., Allison A. C., Oxford J. S., Schild G. C. Early presence of ribonucleoprotein antigen on surface of influenza virus-infected cells. Nature, 1977, vol. 266, no. 5597, p. 52-4.
  29. Wang W. C., Sayedahmed E. E., Sambhara S., Mittal S. K. Progress towards the Development of a Universal Influenza Vaccine. Viruses, 2022, vol. 14, no. 8.
  30. Wheelock E. F. Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin. Science, 1965, vol. 149, no. 3681, p. 310-1.
  31. Zhong W., Liu F., Dong L., Lu X., Hancock K., Reinherz E. L., Katz J. M., Sambhara S. Significant impact of sequence variations in the nucleoprotein on CD8 T cell-mediated cross-protection against influenza A virus infections. PLoS One, 2010, vol. 5, no. 5, p. e10583.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Prokopenko P.I., Stepanova E.A., Matyushenko V.A., Chistyakova A.K., Kostromitina A.D., Kotomina T.S., Rak A.Y., Rubinstein A.A., Kudryavtsev I.V., Novitskaya V.V., Rudenko L.G., Isakova-Sivak I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies