Clinical significance of Streptococcus members in developing periodontitis
- Authors: Bazhutova I.V.1, Ismatullin D.D.1, Lyamin A.V.1, Trunin D.A.1, Zhestkov A.V.1, Razumnyj V.A.1
-
Affiliations:
- Samara State Medical University of the Ministry of Health of Russia
- Issue: Vol 12, No 1 (2022)
- Pages: 51-58
- Section: REVIEWS
- Submitted: 11.03.2021
- Accepted: 21.11.2021
- Published: 07.12.2021
- URL: https://iimmun.ru/iimm/article/view/1698
- DOI: https://doi.org/10.15789/2220-7619-CSO-1698
- ID: 1698
Cite item
Full Text
Abstract
Bacteria of the genus Streptococcus are one of the most numerous and diverse representatives in the normal biocenosis of human organs and systems particularly being abundant as obligatory inhabitants of the oral cavity. All streptococci are divided into six groups: S. mitis, S. anginosus, S. salivarius, S. mutans, S. bovis and S. pyogenes, among which their certain number may potentially participate in the infectious process of developing periodontitis. Owing to the presence of a wide range of adhesion, invasion and colonization factors, they are capable of performing a protective function such as colonization resistance, but they may also cause formation of a pathological process in the tooth tissues and dento-facial system. The most prominent adhesion factors are antigens I/II (Ag I/II), fibronectin, collagen, laminin, fibrinogen binding proteins, serine-rich glycoproteins, pili, protein M, proteases, C5a peptidases, and the presence of a tooth capsule. Among the complex of proteolytic enzymes, it is important to note that streptococci contain enzymes hyaluronidase and lyase, which cleave the β1,4 bond between N-acetylglucosamine and d-glucuronic acid as the components of hyaluronic acid being a part of the connective tissues. The members of the S. anginosus group are able to release chondroitin sulfatase, which destroys chondroitin sulfates as specific components in cartilage, ligaments and other connective tissue structures. The enzymes noted contribute to a deeper spread of microorganisms in host tissues. Pathological processes associated with the development of periodontitis comprise a complex problem, wherein several important elements take part, including an infectious agent, a macroorganismal response in the form of nonspecific and adaptive immunity, as well as involvement of anti-inflammatory components. A great number of studies in research literature are dedicated to describe to participation of the members within the “red”, “orange” and “green” complexes as the principal components in developing periodontitis. Whereas the “yellow” and the “purple” complex play a more protective role by acting as antagonists while interacting with periodontopathogens, but it should not be ruled out a potential participation for some representatives, particularly S. intermedius, S. gordonii, A. odontolyticus, A. naeslundii in developing periodontal disease. Altogether, it poses a problem, which may be solved solely based on a multidisciplinary approach by inviting not only dentists and bacteriologists but also researchers of other specialties. Here we review the studies found in international and national data bases such as Scopus, Web of Science, Springer, RSCI.
About the authors
I. V. Bazhutova
Samara State Medical University of the Ministry of Health of Russia
Email: docba@mail.ru
ORCID iD: 0000-0003-3200-5538
PhD (Medicine), Associate Professor, Department of Dentistry, Institute of Professional Education, Samara State Medical University of the Ministry of Health of Russia.
443079, Samara, Gagarina str., 18.
РоссияD. D. Ismatullin
Samara State Medical University of the Ministry of Health of Russia
Author for correspondence.
Email: danirhalitov@mail.ru
ORCID iD: 0000-0002-4283-907X
Danir D. Ismatullin - Assistant Professor, Department of General and Clinical Microbiology, Immunology and Allergology, Samara State Medical University of the Ministry of Health of Russia.
443079, Samara, Gagarina str., 18.
Phone: +7 (846) 260-33-61.
РоссияA. V. Lyamin
Samara State Medical University of the Ministry of Health of Russia
Email: avlyamin@rambler.ru
ORCID iD: 0000-0002-5905-1895
PhD (Medicine), Associate Professor, Department of General and Clinical Microbiology, Immunology and Allergology, Samara State Medical University of the Ministry of Health of Russia.
443079, Samara, Gagarina str., 18.
РоссияD. A. Trunin
Samara State Medical University of the Ministry of Health of Russia
Email: trunin-027933@yandex.ru
ORCID iD: 0000-0002-7221-7976
PhD, MD (Medicine), Professor, Head of the Department of Dentistry, Institute of Professional Education, Samara State Medical University of the Ministry of Health of Russia.
443079, Samara, Gagarina str., 18.
РоссияA. V. Zhestkov
Samara State Medical University of the Ministry of Health of Russia
Email: avzhestkov2015@yandex.ru
ORCID iD: 0000-0002-3960-830X
Honored Worker of Science of the Russian Federation, PhD, MD (Medicine), Professor, Head of the Department of General and Clinical Microbiology, Immunology and Allergology, Samara State Medical University of the Ministry of Health of Russia.
443079, Samara, Gagarina str., 18.
РоссияV. A. Razumnyj
Samara State Medical University of the Ministry of Health of Russia
Email: razumnyy63@mail.ru
PhD, MD (Medicine), Professor, Department of Dentistry, Institute of Professional Education, Samara State Medical University of the Ministry of Health of Russia.
443079, Samara, Gagarina str., 18.
РоссияReferences
- Baca-Castañón M.L., De la Garza-Ramos M.A., Alcázar-Pizaña A.G., Grondin Y., Coronado-Mendoza A., Sánchez-Najera R.I., Cárdenas-Estrada E., Medina-De la Garza C.E., Escamilla-García E. Antimicrobial effect of lactobacillus reuteri on cariogenic bacteria Streptococcus gordonii, Streptococcus mutans, and periodontal diseases Actinomyces naeslundii and Tannerella forsythia. Probiotics Antimicrob. Proteins, 2015, vol. 7, no. 1, pp. 1–8. doi: 10.1007/s12602-014-9178-y
- Barnard J.P., Stinson M.W. The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide. Infect. Immun., 1996, vol. 64, no. 9, pp. 3853–3857. doi: 10.1128/IAI.64.9.3853-3857.1996
- Bartold P.M., Van Dyke T.E. Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol. 2000, 2013, vol. 62, no. 1, pp., 203–217. doi: 10.1111/j.1600-0757.2012.00450.x
- Burton J.P., Drummond B.K., Chilcott C.N., Tagg J.R., Thomson W.M., Hale J.D., Wescombe P.A. Influence of the probiotic streptococcus salivarius strain m18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J. Med. Microbiol., 2013, vol. 62, pp. 875–884. doi: 10.1099/jmm.0.056663-0
- Chávez de Paz L., Svensäter G., Dahlén G., Bergenholtz G. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment. Oral Surg. Oral. Med. Oral Pathol. Oral Radiol. Endod., 2005, vol. 100, no. 2, pp. 232–241. doi: 10.1016/j.tripleo.2004.10.008
- Corredoira J., Alonso M.P., García-Garrote F., García-Pais M.J., Coira A., Rabuñal R., Gonzalez-Ramirez A., Pita J., Matesanz M., Velasco D., López-Álvarez M.J., Varela J. Streptococcus bovis group and biliary tract infections: an analysis of 51 cases. Clin. Microbiol. Infect., 2014, vol., 20, no. 5, pp. 405–409. doi: 10.1111/1469-0691.12333
- Dadon Z., Cohen A., Szterenlicht Y.M., Assous M.V., Barzilay Y., Raveh-Brawer D., Yinnon A.M., Munter G. Spondylodiskitis and endocarditis due to Streptococcus gordonii. Ann. Clin. Microbiol. Antimicrob., 2017, vol. 16, no. 1: 68. doi: 10.1186/s12941-017-0243-8
- Dekker J.P., Lau A.F. An update on the Streptococcus bovis group: classification, identification, and disease associations. J. Clin. Microbiol., 2016, vol. 54, no. 7, pp. 1694–1699. doi: 10.1128/JCM.02977-15
- Jakubovics N.S., Yassin S.A., Rickard A.H. Community interactions of oral streptococci. Adv. Appl. Microbiol., 2014, vol. 87, pp. 43–110. doi: 10.1016/B978-0-12-800261-2.00002-5
- Jenkinson H.F., Lamont R.J. Oral microbial communities in sickness and in health. Trends Microbiol., 2005, vol. 13, no. 12, pp. 589–595. doi: 10.1016/j.tim.2005.09.006
- Jensen A., Hoshino T., Kilian M. Taxonomy of the Anginosus group of the genus Streptococcus and description of Streptococcus anginosus subsp. whileyi subsp. nov. and Streptococcus constellatus subsp. viborgensis subsp. nov. Int. J. Syst. Evol. Microbiol., 2013, vol. 63, no. 7, pp. 2506–2519. doi: 10.1099/ijs.0.043232-0
- Jensen A., Ladegaard Grønkjær L., Holmstrup P., Vilstrup H., Kilian M. Unique subgingival microbiota associated with periodontitis in cirrhosis patients. Sci. Rep., 2018, vol. 8, no. 1: 10718. doi: 10.1038/s41598-018-28905-w
- Kawamura Y., Hou X.-G., Sultana F., Miura H., Ezaki T. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int. J. Syst. Bacteriol., 1995, vol. 45, no. 2, pp. 406–408. doi: 10.1099/00207713-45-2-406
- Kim S.L., Gordon S.M., Shrestha N.K. Distribution of streptococcal groups causing infective endocarditis: a descriptive study. Diagn. Microbiol. Infect. Dis., 2018, vol. 91, pp. 269–272. doi: 10.1016/j.diagmicrobio.2018.02.015
- Laupland K.B., Ross T., Church D.L., Gregson D.B. Population-based surveillance of invasive pyogenic streptococcal infection in a large Canadian Region. Clin. Microbiol. Infect., 2006, vol. 12, no. 3, pp. 224–230. doi: 10.1111/j.1469-0691.2005.01345.x
- Mahmoud M.Y., Demuth D.R., Steinbach-Rankins J.M. BAR-encapsulated nanoparticles for the inhibition and disruption of Porphyromonas gingivalis-Streptococcus gordonii biofilms. J. Nanobiotechnology, 2018, vol. 16, no. 1: 69. doi: 10.1186/s12951-018-0396-4
- Matesanz M., Rubal D., Iñiguez I., Rabuñal R., García-Garrote F., Coira A., García-País M.J., Pita J., Rodriguez-Macias A., López-Álvarez M.J., Alonso M.P., Corredoira J. Is Streptococcus bovis a urinary pathogen? Eur. J. Clin. Microbiol. Infect. Dis., 2015, vol. 34, pp. 719–725. doi: 10.1007/s10096-014-2273-x
- Mohanty R., Asopa S.J., Joseph M.D., Singh B., Rajguru J.P., Saidath K., Sharma U. Red complex: polymicrobial conglomerate in oral flora: a review. J. Family Med. Prim. Care, 2019, vol. 8, no. 11, pp. 3480–3486. doi: 10.4103/jfmpc.jfmpc_759_19
- Nazir M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health. Sci. (Qassim), 2017, vol. 11, no. 2, pp. 72–80.
- Pérez-Chaparro P.J., Gonçalves C., Figueiredo L.C., Faveri M., Lobão E., Tamashiro D.P., Feres M. Newly identified pathogens associated with periodontitis: a systematic review. J. Dent. Res., 2014, vol. 93, no. 9, pp. 846–858. doi: 10.1177/0022034514542468
- Prasad K.N., Mishra A.M., Gupta D., Husain N., Husain M., Gupta R.K. Analysis of microbial etiology and mortality in patients with brain abscess. J. Infect., 2006, vol. 53, no. 4, pp. 221–227. doi: 10.1016/j.jinf.2005.12.002
- Rams T.E., Degener J.E., van Winkelhoff A.J. Antibiotic resistance in human chronic periodontitis microbiota. J. Periodontol., 2014, vol. 85, no. 1, pp. 160–169. doi: 10.1902/jop.2013.130142
- Rams T.E., Feik D., Mortensen J.E., Degener J.E., van Winkelhoff A.J. Antibiotic susceptibility of periodontal Streptococcus constellatus and Streptococcus intermedius clinical isolates. J. Periodontol., 2014, vol. 85, no. 12, pp. 1792–1798. doi: 10.1902/jop.2014.130291
- Richards V.P., Alvarez A.J., Luce A.R., Bedenbaugh M., Mitchell M.L., Burne R.A., Nascimento M.M. Microbiomes of site-specific dental plaques from children with different caries status. Infect. Immun., 2017, vol. 85, no. 8: e00106-17. doi: 10.1128/IAI.00106-17
- Shaikh H.F., Patil S.H., Pangam T.S., Rathod K.V. Polymicrobial synergy and dysbiosis: an overview. J. Indian. Soc. Periodontol., 2018, vol. 22, pp. 101–106. doi: 10.4103/jisp.jisp_385_17
- Shelburne S.A., Davenport M.T., Keith D.B., Musser J.M. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol., 2008, vol. 16, no. 7, pp. 318–325. doi: 10.1016/j.tim.2008.04.002
- Sibley C.D., Grinwis M.E., Field T.R., Parkins M.D., Norgaard J.C., Gregson D.B., Rabin H.R., Surette M.G. McKay agar enables routine quantification of the ’Streptococcus milleri’ group in cystic fibrosis patients. J. Med. Microbiol., 2010, vol. 59, no. 5, pp. 534–540. doi: 10.1099/jmm.0.016592-0
- Silva N., Abusleme L., Bravo D., Dutzan N., Garcia-Sesnich J., Vernal R., Hernández M., Gamonal J. Host response mechanisms in periodontal diseases. J. Appl. Oral. Sci., 2015, vol. 23, no. 3, pp. 329–355. doi: 10.1590/1678-775720140259
- Smeesters P.R., McMillan D.J., Sriprakash K.S. The streptococcal M protein: a highly versatile molecule. Trends Microbiol., 2010, vol. 18, pp. 275–282. doi: 10.1016/j.tim.2010.02.007
- Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent R.L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol., 1998, vol. 25, no. 2, pp. 134–144. doi: 10.1111/j.1600-051x.1998.tb02419.x
- Suprith S.S., Setty S., Bhat K., Thakur S. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and assessment of leukotoxin in periodontal disease: a clinico-microbiological study. J. Indian. Soc. Periodontol., 2018, vol. 22, no. 3, pp., 201–208. doi: 10.4103/jisp.jisp_36_18.
- Van Samkar A., Brouwer M.C., Pannekoek Y., van der Ende A., van de Beek D. Streptococcus gallolyticus meningitis in adults: report of five cases and review of the literature. Clin. Microbiol. Infect., 2015, vol. 21, pp. 1077–1083. doi: 10.1016/j.cmi.2015.08.003
- Yamaguchi M., Terao Y., Kawabata S. Pleiotropic virulence factor-streptococcus pyogenes fibronectin-binding proteins. Cell Microbiol., 2013, vol. 15, pp. 503–511. doi: 10.1111/cmi.12083
- Zhang S., Green N.M., Sitkiewicz I., Lefebvre R.B., Musser J.M. Identification and characterization of an antigen I/II family protein produced by group a streptococcus. Infect. Immun., 2006, vol. 74, pp. 4200–4213. doi: 10.1128/IAI.00493-06