AUTOIMMUNE DISORDERS IN PATIENTS WITH GRANULOMATOSIS DISEASES AFTER COVID-19: T AND B-CELLS SUBSETS FUNCTION



Cite item

Full Text

Abstract

Abstract

Sarcoidosis and tuberculosis are both granulomatous diseases that have many similarities, making the differential diagnosis of sarcoidosis and tuberculosis difficult, as well as leading to inappropriate treatment selection of both diseases. Autoimmune inflammation (AI) is one of the processes identified tuberculosis and sarcoidosis. Current evidences about the risk and clinical outcomes of COVID-19 infection in patient with sarcoidosis and M.tuberculosis co-infection are still not well understood. SARS-CoV-2 has direct damage to the epithelial cells of the respiratory system, and in-directly due to circulatory disorders. Materials and methods. In the study we analyzed characteristics of autoimmune response in patients with granulomatosis diseases (tuberculosis and sarcoidosis) after COVID-19. We have analyzed articles for the period of December 2019 to March 2023, published in international database ("Medline", "PubMed", "Scopus"). The keywords we used “COVID-19”, “SARS-CoV-2”, “tuberculosis”, “sarcoidosis”, “granulomatosis diseases”, “T cells”, “B cells”, “Treg", "follicular Treg" and "Treg subsets". The narrative review was carried out in accordance with the PRISMA protocol (http://www.prisma-statement.org) used for this type of study (ID -423604). Results. The influence of COVID-19 infection can also make a significant contribution to the violation of the T- and B-cell immune response, the violation of the nature of cellular metabolism, which will affect the course of granulomatous inflammation in various ways. According to the different researches, autoimmune inflammation can be an important protective mechanism in sarcoidosis and, at the same time, exacerbates the course of tuberculosis infection with the disease progression and pathogen drug resistance formation subsequently. The study of immune response features in patients with COVID-19 showed the presence of several similar characteristics in cellular components of the immune response. Conclusion: Evidence of the presence of autoimmune inflammation in patients with these granulomatous lung diseases, the development of patient immunotypes, including the transferred COVID-19, will be a significant contribution to the development of personalized patient management tactics, taking into account the identified violations of the immune response mechanisms.

About the authors

Anna Starshinova

Almazov National Medical Research Centre, Saint-Petersburg, Russia

Email: starshinova_777@mail.ru
ORCID iD: 0000-0002-9023-6986
Scopus Author ID: 23993101400

student of Medicine Department, Saint Petersburg State Pediatric Medical University

Russian Federation

Igor Kudryavtsev

Institution of Experimental Medicine, department of immunology, St. Petersburg, Russia

Email: igorek1981@yandex.ru
Scopus Author ID: 56954696800

PhD. Head of laboratory, laboratory of cellular immunology, Institute of Experimental Medicine, St. Petersburg, Russian Federation

Russian Federation

Artem Rubinstein

Institution of Experimental Medicine, department of immunology, St. Petersburg, Russia

Email: arrubin6@mail.ru
ORCID iD: 0000-0002-8493-5211
Scopus Author ID: 57417440100

Jr. researcher, department of immunology, Institute of Experimental Medicine, St.Petersburg, Russian Federation

Russian Federation

Anna Malkova

Ariel University Faculty of Natural Sciences, Ariel, Israel

Email: anya.malkova.95@mail.ru
ORCID iD: 0000-0002-6008-1354
Scopus Author ID: 57213621564

PhD student department of molecular biology, Ariel University Faculty of Natural Sciences

Israel

Anastasia Starshinova

Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia

Email: asya.starshinova@mail.ru
ORCID iD: 0000-0001-7059-3436
Scopus Author ID: 57208720977

student of Medicine Department, Saint Petersburg State Pediatric Medical University

Russian Federation

Irina Dovgalyk

St. Petersburg Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia

Email: prdovgaluk@mail.ru
ORCID iD: 0000-0001-8383-8519
Scopus Author ID: 57201188883

Professor, PhD, MD, Leading Researcher, Head of Pediatric Tuberculosis Department, St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation

Russian Federation

Dmitry Kudlay

I. M. Sechenov First Moscow State Medical University, Moscow, Russia;
Institute of Immunology FMBA of Russia, Moscow, Russia

Author for correspondence.
Email: D624254@gmail.com
ORCID iD: 0000-0003-1878-4467
Scopus Author ID: 57201653374

DMedSci, MD, Professor of the Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation; Leading Researcher, Laboratory of Personalized Medicine and Molecular Immunology, NRC Institute of Immunology FMBA of Russia

Russian Federation

References

  1. Abebe F. Immunological basis of early clearance of Mycobacterium tuberculosis infection: the role of natural killer cells. Clin Exp Immunol. 2021 Apr;204(1):32-40. doi: 10.1111/cei.13565
  2. Abreu, M.T., Carvalheiro, H., Rodrigues-Sousa, T. et al. Alterations in the peripheral blood B cell subpopulations of multidrug-resistant tuberculosis patients. Clin Exp Med 14, 423–429 (2014). https://doi.org/10.1007/s10238-013-0258-1
  3. Adamo S, Michler J, Zurbuchen Y, et al. Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection. Nature. 2022;602(7895):148-155. doi: 10.1038/s41586-021-04280-x
  4. Ahmed A, Adiga V, Nayak S, et al. Circulating HLA-DR+CD4+ effector memory T cells resistant to CCR5 and PD-L1 mediated suppression compromise regulatory T cell function in tuberculosis. PLoS Pathog. 2018;14(9):e1007289. Published 2018 Sep 19. doi: 10.1371/journal.ppat.1007289
  5. Akiyama M, Yasuoka H, Yamaoka K, Suzuki K, Kaneko Y, Kondo H, Kassai Y, Koga K, Miyazaki T, Morita R, Yoshimura A, Takeuchi T. Enhanced IgG4 production by follicular helper 2 T cells and the involvement of follicular helper 1 T cells in the pathogenesis of IgG4-related disease. Arthritis Res Ther. 2016 Jul 13;18:167. doi: 10.1186/s13075-016-1064-4
  6. Аkthivel P., Bruder D., Mechanism of granuloma formation in sarcoidosis, Curr. Opin. Hematol., Vol. 24, (2017), pp. 59–65. https://doi.org/10.1097/MOH.0000000000000301
  7. Al Balushi A, AlShekaili J, Al Kindi M, et al. Immunological predictors of disease severity in patients with COVID-19. Int J Infect Dis. 2021;110:83-92. doi: 10.1016/j.ijid.2021.06.056
  8. Alosaimi B, Mubarak A, Hamed ME, et al. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front Immunol. 2021;12:668725. Published 2021 Jul 1. doi: 10.3389/fimmu.2021.668725
  9. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015 Mar;135(3):626-35. doi: 10.1016/j.jaci.2014.11.001
  10. Bagavant H, Cizio K, Araszkiewicz AM, et al. Systemic immune response to vimentin and granuloma formation in a model of pulmonary sarcoidosis. J Transl Autoimmun. 2022;5:100153. Published 2022 Apr 5. doi: 10.1016/j.jtauto.2022.100153
  11. Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity [published correction appears in Pathophysiology. 2022 Aug 16;29(3):469-470]. Pathophysiology. 2022;29(2):298-318. Published 2022 Jun 13. doi: 10.3390/pathophysiology29020022
  12. Billiau A, Matthys P. Modes of action of Freund's adjuvants in experimental models of autoimmune diseases. J Leukoc Biol. 2001; 70(6):849–860
  13. Billottet C, Quemener C, Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta. 2013;1836(2):287-295. doi: 10.1016/j.bbcan.2013.08.002
  14. Blank M, Barzilai O, Shoenfeld Y. Molecular mimicry and auto-immunity. Clin Rev Allergy Immunol. 2007 Feb;32(1):111-8. doi: 10.1007/BF02686087
  15. Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology. 2021 Sep-Oct;27(5):423-437. doi: 10.1016/j.pulmoe.2021.03.008
  16. Borham M, Oreiby A, El-Gedawy A, et al. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens. 2022;11(7):715. Published 2022 Jun 21. doi: 10.3390/pathogens11070715
  17. Broos CE, van Nimwegen M, Hoogsteden HC, Hendriks RW, Kool M, van den Blink B. Granuloma formation in pulmonary sarcoidosis. Front Immunol. 2013;4:437. Published 2013 Dec 10. doi: 10.3389/fimmu.2013.00437
  18. Broos CE, van Nimwegen M, Kleinjan A, et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res. 2015;16(1):108. Published 2015 Sep 16. doi: 10.1186/s12931-015-0265-8
  19. Busuttil A, Weigt SS, Keane MP, et al. CXCR3 ligands are augmented during the pathogenesis of pulmonary sarcoidosis. Eur Respir J. 2009;34(3):676-686. doi: 10.1183/09031936.00157508
  20. Cain H., Kraus B. Immunofluorescence microscopic demonstration of vimentin filaments in asteroid bodies of sarcoidosis. A comparison with electron microscopic findings. J Virchows arch B cell pathol incl mol pathol., 1983,Vol 42, no.2, pp.213-26. doi: 10.1007/bf02890384
  21. Cardona P and Cardona P-J (2019) Regulatory T Cells in Mycobacterium tuberculosis Infection. Front. Immunol. 10:2139. doi: 10.3389/fimmu.2019.02139
  22. Chen X, Huang J, Huang Y, Chen J, Huang Y, Jiang X, Shi Y. Characteristics of immune cells and cytokines in patients with coronavirus disease 2019 in Guangzhou, China. Hum Immunol. 2020 Dec;81(12):702-708. doi: 10.1016/j.humimm.2020.08.006
  23. Chen X, Zhang M, Liao M, et al. Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T Cells. Am J Respir Crit Care Med. 2010;181(7):734-742. doi: 10.1164/rccm.200909-1463OC
  24. Chen YC, Chin CH, Liu SF, Wu CC, Tsen CC, Wang YH, Chao TY, Lie CH, Chen CJ, Wang CC, Lin MC. Prognostic values of serum IP-10 and IL-17 in patients with pulmonary tuberculosis. Dis Markers. 2011;31(2):101-10. doi: 10.3233/DMA-2011-0808
  25. Cheng MP, Butler-Laporte G, Parkes LO, Bold TD, Fritzler MJ, Behr MA. Prevalence of Auto-antibodies in Pulmonary Tuberculosis. Open Forum Infect Dis. 2019;6(4):ofz114. Published 2019 Mar 7. doi: 10.1093/ofid/ofz114
  26. Chiacchio T, Casetti R, Butera O, Vanini V, Carrara S, Girardi E, Di Mitri D, Battistini L, Martini F, Borsellino G, Goletti D. Characterization of regulatory T cells identified as CD4(+)CD25(high)CD39(+) in patients with active tuberculosis. Clin Exp Immunol. 2009 Jun;156(3):463-70. doi: 10.1111/j.1365-2249.2009.03908.x
  27. Cinetto F., Scarpa R., Dell’Edera A., Jones M.G., Immunology of sarcoidosis: old companions, new relationships, Curr. Opin. Pulm. Med., Vol. 26, (2020) , pp. 535–543. https://doi.org/10.1097/MCP.0000000000000711
  28. Kanduc D, Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin Immunol. 2020;215:108426. doi: 10.1016/j.clim.2020.108426
  29. d'Alessandro M, Bergantini L, Cameli P, et al. Adaptive immune system in pulmonary sarcoidosis-Comparison of peripheral and alveolar biomarkers. Clin Exp Immunol. 2021;205(3):406-416. doi: 10.1111/cei.13635
  30. d'Alessandro M, Bergantini L, Gangi S, Cameli P, Armati M, Fanetti M, Mezzasalma F, Baglioni S, Sarc-Si Study Group, Bargagli E. Imbalance of Lymphocyte Subsets and CD45RA-Expressing Cells in Intrathoracic Lymph Nodes, Alveolar Compartment and Bloodstream of Pulmonary Sarcoidosis Patients. Int J Mol Sci. 2023 Jun 19;24(12):10344. doi: 10.3390/ijms241210344
  31. De Biasi S, Lo Tartaro D, Meschiari M, et al. Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. Eur J Immunol. 2020;50(9):1283-1294. doi: 10.1002/eji.202048838
  32. Ding J, Dai J, Cai H, Gao Q, Wen Y. Extensively disturbance of regulatory T cells - Th17 cells balance in stage II pulmonary sarcoidosis. Int J Med Sci. 2017;14(11):1136-1142. Published 2017 Sep 4. doi: 10.7150/ijms.18838
  33. Dubaniewicz A. Mycobacterium tuberculosis heat shock proteins and autoimmunity in sarcoidosis. Autoimmun Rev. 2010;9(6):419-424. doi: 10.1016/j.autrev.2009.11.015
  34. Elkington P, Tebruegge M, Mansour S. Tuberculosis: an Infection-Initiated Autoimmune Disease? Trends Immunol. 2016 Dec;37(12):815-818. doi: 10.1016/j.it.2016.09.007
  35. Erre GL, Cossu D, Masala S, Mameli G, Cadoni ML, Serdino S, Longu MG, Passiu G, Sechi LA. Mycobacterium tuberculosis lipoarabinomannan antibodies are associated to rheumatoid arthritis in Sardinian patients. Clin Rheumatol. 2014 Dec;33(12):1725-9. doi: 10.1007/s10067-014-2678-z
  36. Caso F, Costa L, Ruscitti P, et al. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects?. Autoimmun Rev. 2020;19(5):102524. doi: 10.1016/j.autrev.2020.102524
  37. Fathi F, Sami R, Mozafarpoor S, et al. Immune system changes during COVID-19 recovery play key role in determining disease severity. Int J Immunopathol Pharmacol. 2020;34:2058738420966497. doi: 10.1177/2058738420966497
  38. Ferrantelli F, Chiozzini C, Manfredi F, et al. Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses. 2022;14(2):329. doi: 10.3390/v14020329
  39. Fischer A, Ellinghaus D, Nutsua M, et al. Identification of Immune-Relevant Factors Conferring Sarcoidosis Genetic Risk. Am J Respir Crit Care Med. 2015;192(6):727-736. doi: 10.1164/rccm.201503-0418OC
  40. Fischer A, Rybicki BA. Granuloma genes in sarcoidosis: what is new?. Curr Opin Pulm Med. 2015;21(5):510-516. doi: 10.1097/MCP.0000000000000189
  41. Gong F, Dai Y, Zheng T, et al. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest. 2020;130(12):6588-6599. doi: 10.1172/JCI141054
  42. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011;89(2):207-215. doi: 10.1038/icb.2010.158
  43. Gutiérrez-Bautista JF, Rodriguez-Nicolas A, Rosales-Castillo A, et al. Negative Clinical Evolution in COVID-19 Patients Is Frequently Accompanied With an Increased Proportion of Undifferentiated Th Cells and a Strong Underrepresentation of the Th1 Subset. Front Immunol. 2020;11:596553. Published 2020 Nov 26. doi: 10.3389/fimmu.2020.596553
  44. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med. (2006) 173:803–10. doi: 10.1164/rccm.200508-1294OC
  45. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541-543. doi: 10.1038/s41423-020-0401-3
  46. Habel JR, Nguyen THO, van de Sandt CE, et al. Suboptimal SARS-CoV-2-specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype. Proc Natl Acad Sci U S A. 2020;117(39):24384-24391. doi: 10.1073/pnas.2015486117
  47. Halim L, Romano M, McGregor R, Correa I, Pavlidis P, Grageda N, Hoong SJ, Yuksel M, Jassem W, Hannen RF, Ong M, Mckinney O, Hayee B, Karagiannis SN, Powell N, Lechler RI, Nova-Lamperti E, Lombardi G. An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment. Cell Rep. 2017 Jul 18;20(3):757-770. doi: 10.1016/j.celrep.2017.06.079
  48. Hingley-Wilson SM, Connell D, Pollock K, et al. ESX1-dependent fractalkine mediates chemotaxis and Mycobacterium tuberculosis infection in humans. Tuberculosis (Edinb). 2014;94(3):262-270. doi: 10.1016/j.tube.2014.01.004
  49. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021 Jan;93(1):250-256. doi: 10.1002/jmv.26232
  50. Huang H, Lu Z, Jiang C, Liu J, Wang Y, Xu Z. Imbalance between Th17 and regulatory T-Cells in sarcoidosis. Int J Mol Sci. 2013 Oct 30;14(11):21463-73. doi: 10.3390/ijms141121463
  51. I.V. Kudryavtsev, N.M. Lazareva, O.P. Baranova, A.S. Golovkin, D. V. Isakov, M.K. Serebriakova, T.P. Ses, M.M. Ilkovich, A. Totolian Areg, CD39+ expression by regulatory T cells in pulmonary sarcoidosis and Lofgren’s syndrome, Med. Immunol. 21 (2019) 467–478. https://doi.org/10.15789/1563-0625-2019-3-467-478.
  52. Joosten SA, van Meijgaarden KE, Del Nonno F, et al. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathog. 2016;12(6):e1005687. Published 2016 Jun 15. doi: 10.1371/journal.ppat.1005687
  53. Kakumanu P, Yamagata H, Sobel ES, Reeves WH, Chan EK, Satoh M. Patients with pulmonary tuberculosis are frequently positive for anti-cyclic citrullinated peptide antibodies, but their sera also react with unmodified arginine-containing peptide. Arthritis Rheum. 2008;58(6):1576-1581. doi: 10.1002/art.23514
  54. Kalfaoglu B, Almeida-Santos J, Tye CA, Satou Y, Ono M. T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Front Immunol. 2020 Oct 8;11:589380. doi: 10.3389/fimmu.2020.589380
  55. Kalinina O, Golovkin A, Zaikova E, Aquino A, Bezrukikh V, Melnik O, Vasilieva E, Karonova T, Kudryavtsev I, Shlyakhto E. Cytokine Storm Signature in Patients with Moderate and Severe COVID-19. Int J Mol Sci. 2022 Aug 10;23(16):8879. doi: 10.3390/ijms23168879
  56. Kaneko N, Kuo HH, Boucau J, et al. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell. 2020;183(1):143-157.e13. doi: 10.1016/j.cell.2020.08.025
  57. Kim SH, Kim J, Jang JY, et al. Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits [published correction appears in Front Immunol. 2022 Dec 02;13:1105713]. Front Immunol. 2022;13:1055811. doi: 10.3389/fimmu.2022.1055811
  58. Kita S, Tsuda T, Sugisaki K, Miyazaki E, Matsumoto T. Characterization of distribution of T lymphocyte subsets and activated T lymphocytes infiltrating into sarcoid lesions. Intern Med. 1995;34(9):847-855. doi: 10.2169/internalmedicine.34.847
  59. Korobova ZR, Arsentieva NA, Liubimova NE, Batsunov OK, Dedkov VG, Gladkikh AS, Sharova AA, Adish Z, Chernykh EI, Kaschenko VA, Ratnikov VA, Gorelov VP, Stanevich OV, Kulikov AN, Pevtsov DE, Totolian AA. Cytokine Profiling in Different SARS-CoV-2 Genetic Variants. Int J Mol Sci. 2022 Nov 16;23(22):14146. doi: 10.3390/ijms232214146
  60. Koutsakos M, Rowntree LC, Hensen L, et al. Integrated immune dynamics define correlates of COVID-19 severity and antibody responses. Cell Rep Med. 2021;2(3):100208. doi: 10.1016/j.xcrm.2021.100208
  61. Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D. .E., Kalinina Yu.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlay D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P. ., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., P.A. Gear, A.G. Borisov. Clinical immunology. A practical guide for infectious disease specialists. Krasnoyarsk: Polikor, 2021. 563 p. (in Russian). doi: 10.17513/np.438
  62. Kozlov, V.A.; Savchenko, A.A.; Kudryavtsev, I.V.; Kozlov, I.G.; Kudlay, D.A.; Prodeus, A.P.; Borisov, A.G. Clinical Immunology. In Krasnoyarsk; Polycor: Krasnoyarsk, Russia, 2020; 386p, ISBN 978-5-6044565-6-9.
  63. Kratzer B, Trapin D, Ettel P, Körmöczi U, Rottal A, Tuppy F, Feichter M, Gattinger P, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Grabmeier-Pfistershammer K, Tauber PA, Gerdov M, Mühl B, Perkmann T, Fae I, Wenda S, Führer H, Henning R, Valenta R, Pickl WF. Immunological imprint of COVID-19 on human peripheral blood leukocyte populations. Allergy. 2021 Mar;76(3):751-765. doi: 10.1111/all.14647
  64. Kudryavtsev I, Rubinstein A, Golovkin A, Kalinina O, Vasilyev K, Rudenko L, Isakova-Sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses. 2022 May 18;14(5):1082. doi: 10.3390/v14051082
  65. Kudryavtsev I, Serebriakova M, Starshinova A, Zinchenko Y, Basantsova N, Malkova A, Soprun L, Churilov LP, Toubi E, Yablonskiy P, Shoenfeld Y. Imbalance in B cell and T Follicular Helper Cell Subsets in Pulmonary Sarcoidosis. Sci Rep. 2020 Jan 23;10(1):1059. doi: 10.1038/s41598-020-57741-0
  66. Kudryavtsev I, Zinchenko Y, Starshinova A, Serebriakova M, Malkova A, Akisheva T, Kudlay D, Glushkova A, Yablonskiy P, Shoenfeld Y. Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis. Diagnostics (Basel). 2023 Apr 10;13(8):1378. doi: 10.3390/diagnostics13081378
  67. Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Serebriakova M.K., Ses’ T.P., Ilkovich M.M., Totolian A.A. Peripheral blood T helper cell subsets in Löfgren’s and non-Löfgren’s syndrome patients. Medical Immunology (Russia). 2022;24(3):573-586. (In Russ.) https://doi.org/10.15789/1563-0625-PBT-2468
  68. Kudryavtsev I.V., Serebriakova M.K., Starshinova A.A., Zinchenko Yu.S., Basantsova N.Yu., Belyaeva E.N., Pavlova M.V., Yablonskiy P.K. Altered peripheral blood Th17 and follicular T-helper subsets in patients with pulmonary tuberculosis. Russian Journal of Infection and Immunity. 2019;9(2):304-314. https://doi.org/10.15789/2220-7619-2019-2-304-314.
  69. Kudryavtsev IV, Arsentieva NA, Batsunov OK, et al. Alterations in B Cell and Follicular T-Helper Cell Subsets in Patients with Acute COVID-19 and COVID-19 Convalescents. Curr Issues Mol Biol. 2021;44(1):194-205. Published 2021 Dec 30. doi: 10.3390/cimb44010014
  70. Kudryavtsev IV, Arsentieva NA, Korobova ZR, et al. Heterogenous CD8+ T Cell Maturation and 'Polarization' in Acute and Convalescent COVID-19 Patients. Viruses. 2022;14(9):1906. Published 2022 Aug 28. doi: 10.3390/v14091906
  71. Kumar P, Saini S, Khan S, Surendra Lele S, Prabhakar BS. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol. 2019 May;339:41-49. doi: 10.1016/j.cellimm.2018.09.008
  72. Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 2020 Oct;26(10):1623-1635. doi: 10.1038/s41591-020-1038-6
  73. Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. CXCR3 chemokine receptor ligands in sarcoidosis. Medical Immunology (Russia). 2021;23(1):73-86. (In Russ.) https://doi.org/10.15789/1563-0625-CCR-2181
  74. Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Isakov D.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P.,Ilkovich M.M., Totolian A.A. chemokines CCL17 and CCL22 in sarcoidosis. Medical Immunology (Russia), 2021,Vol. 23, no. 4, pp. 791-798. doi: 10.15789/1563-0625-CCA-2340
  75. Lazareva, N., Kudryavtsev, I., Baranova, O., Serebriakova, M., Ses’, T., Ilkovich, M., Totolyan, A. "Peripheral blood cytotoxic T cells in patients with sarcoidosis." Rossiiskii immunologicheskii zhurnal 12.3 (2018):348-353. doi: 10.31857/S102872210002408-3
  76. Li Y, Wei C, Xu H, Jia J, Wei Z, Guo R, Jia Y, Wu Y, Li Y, Qi X, Li Z, Gao X. The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm. 2018 Mar 19;2018:6587296. doi: 10.1155/2018/6587296
  77. Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection - a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020, 9, 727-732. doi: 10.1080/22221751.2020.1746199
  78. Linke M, Pham HT, Katholnig K, et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol. 2017;18(3):293-302. doi: 10.1038/ni.3655
  79. Lo CY, Huang YC, Huang HY, et al. Increased Th1 Cells with Disease Resolution of Active Pulmonary Tuberculosis in Non-Atopic Patients. Biomedicines. 2021;9(7):724. Published 2021 Jun 24. doi: 10.3390/biomedicines9070724
  80. Ly NTM, Ueda-Hayakawa I, Nguyen CTH, Okamoto H. Exploring the imbalance of circulating follicular helper CD4+ T cells in sarcoidosis patients. J Dermatol Sci. 2020;97(3):216-224. doi: 10.1016/j.jdermsci.2020.02.002
  81. Lyadova IV, Panteleev AV. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm. 2015;2015:854507. doi: 10.1155/2015/854507
  82. Machado Ribeiro F, Goldenberg T. Mycobacteria and autoimmunity. Lupus. 2015;24(4-5):374-81. doi: 10.1177/0961203314559634
  83. Malkova A, Kudlay D, Kudryavtsev I, Starshinova A, Yablonskiy P, Shoenfeld Y. Immunogenetic Predictors of Severe COVID-19. Vaccines (Basel). 2021;9(3):211. Published 2021 Mar 3. doi: 10.3390/vaccines9030211
  84. Mani R, Gupta M, Malik A, Tandon R, Prasad R, Bhatnagar R, Banerjee N. Adjuvant Potential of Poly-α-l-Glutamine from the Cell Wall of Mycobacterium tuberculosis. Infect Immun. 2018; 86(10). pii: e00537-18. doi: 10.1128/IAI.00537-18
  85. Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The Role of Th17 Response in COVID-19. Cells. 2021;10(6):1550. Published 2021 Jun 19. doi: 10.3390/cells10061550
  86. Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. Preprint. bioRxiv. 2020;2020.05.20.106401. Published 2020 May 23. doi: 10.1101/2020.05.20.106401
  87. Mertz, Philippe et al. Granulomatous manifestations associated with COVID-19 infection: Is there a link between these two diseases? Autoimmunity reviews. 2021; 20(6): 102824.
  88. Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells [published correction appears in J Exp Med. 2006 Feb 20;203(2):477]. J Exp Med. 2006;203(2):359-370. doi: 10.1084/jem.20050648
  89. Mohebbi SR, Baghaei K, Rostami-Nejad M, et al. Significant changes of CD4, FOXP3, CD25, and IL6 expression level in Iranian COVID-19 patients. Gastroenterol Hepatol Bed Bench. 2020;13(4):388-392.
  90. Musaelyan A., Lapin S., Nazarov V., Tkachenko O., Gilburd B., Mazing A., Mikhailova L., Shoenfeld Y. Vimentin as antigenic target in autoimmunity: a comprehensive review. J Autoimmun rev., 2018, Vol. 17, no.9, pp.926-934. doi: 10.1016/j.autrev.2018.04.004
  91. Nureki S, Miyazaki E, Ando M, et al. Circulating levels of both Th1 and Th2 chemokines are elevated in patients with sarcoidosis. Respir Med. 2008;102(2):239-247. doi: 10.1016/j.rmed.2007.09.006
  92. Odak I, Barros-Martins J, Bošnjak B, et al. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine. 2020;57:102885. doi: 10.1016/j.ebiom.2020.102885
  93. Ogongo P, Tezera LB, Ardain A, et al. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J Clin Invest. 2021;131(10):e142014. doi: 10.1172/JCI142014
  94. Okamoto Yoshida Y, Umemura M, Yahagi A, et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol. 2010;184(8):4414-4422. doi: 10.4049/jimmunol.0903332
  95. Patterson K.C., Chen E.S. The Pathogenesis of Pulmonary Sarcoidosis and Implications for Treatme Ribeiro FM., Goldenberg T. Mycobacteria and autoimmunity. Lupus. 2015;24(4-5):374-81. doi: 10.1177/0961203314559634
  96. Peng X, Ouyang J, Isnard S, et al. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front Immunol. 2020;11:596631. Published 2020 Dec 15. doi: 10.3389/fimmu.2020.596631
  97. Pérez-Gómez A, Gasca-Capote C, Vitallé J, et al. Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response. Clin Transl Med. 2022;12(4):e802. doi: 10.1002/ctm2.802
  98. Prasse A, Georges CG, Biller H, et al. Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells. Clin Exp Immunol. 2000;122(2):241-248. doi: 10.1046/j.1365-2249.2000.01365.x
  99. Radziszewska A, Moulder Z, Jury EC, Ciurtin C. CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. Int J Mol Sci. 2022 Sep 28;23(19):11431. doi: 10.3390/ijms231911431
  100. Ramasamy A, Wang C, Brode WM, Verduzco-Gutierrez M, Melamed E. Immunologic and Autoimmune-Related Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Clinical Symptoms and Mechanisms of Disease. Phys Med Rehabil Clin N Am. 2023 Aug;34(3):623-642. doi: 10.1016/j.pmr.2023.04.004
  101. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R.,Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γ-producing T-Helper 17.1 Cells are increased in sarcoidosis and are more prevalent than T-Helper type 1 Cells. Am.J. Respir. Crit. Care Med., 2016, Vol. 193, no. 11, pp. 1281-1291.
  102. Repac J, Mandić M, Lunić T, Božić B, Božić Nedeljković B. Mining the capacity of human-associated microorganisms to trigger rheumatoid arthritis-A systematic immunoinformatics analysis of T cell epitopes. PLoS One. 2021;16(6):e0253918. doi: 10.1371/journal.pone.025391
  103. Richmond BW, Ploetze K, Isom J, et al. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J Clin Immunol. 2013;33(2):446-455. doi: 10.1007/s10875-012-9817-6
  104. Rijnink WF, Ottenhoff TH and Joosten SA (2021) B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front. Immunol. 12:640168. doi: 10.3389/fimmu.2021.640168
  105. Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun. 2023 Sep;139:103070. doi: 10.1016/j.jaut.2023.103070
  106. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4):778-809. doi: 10.1128/CMR.14.4.778-809.2001
  107. San Segundo D, Arnáiz de Las Revillas F, Lamadrid-Perojo P, et al. Innate and Adaptive Immune Assessment at Admission to Predict Clinical Outcome in COVID-19 Patients. Biomedicines. 2021;9(8):917. Published 2021 Jul 29. doi: 10.3390/biomedicines9080917
  108. Saris A, Reijnders TDY, Nossent EJ, et al. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax. 2021;76(10):1010-1019. doi: 10.1136/thoraxjnl-2020-216256
  109. Sattler A, Angermair S, Stockmann H, et al. SARS-CoV-2-specific T cell responses and correlations with COVID-19 patient predisposition. J Clin Invest. 2020;130(12):6477-6489. doi: 10.1172/JCI140965
  110. Saussine A, Tazi A, Feuillet S, et al. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One. 2012;7(8):e43588. doi: 10.1371/journal.pone.0043588
  111. Scadding JG. Mycobacterium tuberculosis in the aetiology of sarcoidosis. Br. Med. J. 1960; 2(5213): 1617–1623.
  112. Schultheiß C, Paschold L, Simnica D, et al. Next-Generation Sequencing of T and B Cell Receptor Repertoires from COVID-19 Patients Showed Signatures Associated with Severity of Disease. Immunity. 2020;53(2):442-455.e4. doi: 10.1016/j.immuni.2020.06.024
  113. Sellares J, Strambu I, Crouser ED, et al. New advances in the development of sarcoidosis models: a synopsis of a symposium sponsored by the Foundation for Sarcoidosis Research. Sarcoidosis Vasc Diffuse Lung Dis. 2018;35(1):2-4. doi: 10.36141/svdld.v35i1.7032
  114. Semple PL, Binder AB, Davids M, Maredza A, van Zyl-Smit RN, Dheda K. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am J Respir Crit Care Med. 2013 Jun 1;187(11):1249-58. doi: 10.1164/rccm.201210-1934OC
  115. Sève P, Pacheco Y, Durupt F, Jamilloux Y, Gerfaud-Valentin M, Isaac S, Boussel L, Calender A, Androdias G, Valeyre D, El Jammal T. Sarcoidosis: A Clinical Overview from Symptoms to Diagnosis. Cells. 2021 Mar 31;10(4):766. doi: 10.3390/cells10040766
  116. Sharma A, Balda S, Apreja M, Kataria K, Capalash N, Sharma P. COVID-19 Diagnosis: Current and Future Techniques. Int J Biol Macromol. 2021 Dec 15;193(Pt B):1835-1844. doi: 10.1016/j.ijbiomac.2021.11.016
  117. Sharp M, Mustafa AM, Farah N, Bonham CA. Interstitial Lung Disease and Sarcoidosis. Clin Chest Med. 2023 Sep;44(3):575-584. doi: 10.1016/j.ccm.2023.06.003
  118. Shoenfeld Y, Aron-Maor A, Tanai A, Ehrenfeld M. BCG and Autoimmunity: Another Two-Edged Sword. Journal of Autoimmunity. 2001; 16: 235–240. doi: 10.1006/jaut.2000.0494
  119. Song Z., Marzilli L., Greenlee B.M., Chen E.S., Silver R.F., Askin F.B., Teirstein A.S., Zhang Y., Cotter R.J., Moller D.R. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J Exp med, 2005, Vol. 201, pp.755–76 doi: 10.1084/jem.20040429
  120. Sosa-Hernández VA, Torres-Ruíz J, Cervantes-Díaz R, Romero-Ramírez S, Páez-Franco JC, Meza-Sánchez DE, Juárez-Vega G, Pérez-Fragoso A, Ortiz-Navarrete V, Ponce-de-León A, Llorente L, Berrón-Ruiz L, Mejía-Domínguez NR, Gómez-Martín D and Maravillas-Montero JL (2020) B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front. Immunol. 11:611004. doi: 10.3389/fimmu.2020.611004
  121. Spoerl S, Kremer AN, Aigner M, et al. Upregulation of CCR4 in activated CD8+ T cells indicates enhanced lung homing in patients with severe acute SARS-CoV-2 infection. Eur J Immunol. 2021;51(6):1436-1448. doi: 10.1002/eji.202049135
  122. Starshinova A, Malkova А, Kudryavtsev I, Kudlay D, Zinchenko Y, Yablonskiy P. Tuberculosis and autoimmunity: Common features. Tuberculosis (Edinb). 2022;134:102202. doi: 10.1016/j.tube.2022.102202
  123. Starshinova A, Zinchenko Y, Malkova A, Kudlay D, Kudryavtsev I, Yablonskiy P. Sarcoidosis and Autoimmune Inflammatory Syndrome Induced by Adjuvants. Life (Basel). 2023;13(4):1047. Published 2023 Apr 19. doi: 10.3390/life13041047
  124. Starshinova A.A., Malkova A.M., Zinchenko Y.S., Basantsova N.Y., Pavlova M.V., Belyaeva E.N., et al. Characteristics of autoimmune inflammation in patients with pulmonary tuberculosis. Med. Immunol. 2019;21(5):911–918. doi: 10.15789/1563-0625-2019-5-911-918
  125. Starshinova AA, Malkova AM, Basantsova NY, et al. Sarcoidosis as an Autoimmune Disease. Front Immunol. 2020;10:2933. Published 2020 Jan 8. doi: 10.3389/fimmu.2019.02933
  126. Starshinova AA, Malkova AM, Zinchenko Yu. S., Basantsova N. Yu., Kudlay DA, Autoimmune component in the etiology of sarcoidosis, Tuberc. Lung Dis. 98 (2020) 54–62. https://doi.org/http://doi.org/10.21292/2075-1230-2020-98-5-54-62.
  127. Szekanecz Z, Balog A, Constantin T, Czirják L, Géher P, Kovács L, Kumánovics G, Nagy G, Rákóczi É, Szamosi S, Szűcs G, Vályi-Nagy I. COVID-19: autoimmunity, multisystemic inflammation and autoimmune rheumatic patients. Expert Rev Mol Med. 2022 Mar 15;24:e13. doi: 10.1017/erm.2022.10
  128. Tan M, Liu Y, Zhou R, Deng X, Li F, Liang K, Shi Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology. 2020 Jul;160(3):261-268. doi: 10.1111/imm.13223
  129. Tana C, Cinetto F, Mantini C, Bernardinello N, Tana M, Ricci F, Ticinesi A, Meschi T, Scarpa R, Cipollone F, Giamberardino MA, Spagnolo P. Sarcoidosis and COVID-19: At the Cross-Road between Immunopathology and Clinical Manifestation. Biomedicines. 2022 Oct 9;10(10):2525. doi: 10.3390/biomedicines10102525
  130. Tchernev G, Ananiev J, Cardoso JC, et al. Sarcoidosis and molecular mimicry--important etiopathogenetic aspects: current state and future directions. Wien Klin Wochenschr. 2012;124(7-8):227-238. doi: 10.1007/s00508-012-0154-9
  131. Ten Berge B, Paats MS, Bergen IM, et al. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford). 2012;51(1):37-46. doi: 10.1093/rheumatology/ker316
  132. Thillai M., Eberhardt C., Lewin A.M., Potiphar L., Hingley-Wilson S., Sridhar S., Macintyre J., Kon O.M., Wickremasinghe M., Wells A., et al. Sarcoidosis and tuberculosis cytokine profiles: Indistinguishable in bronchoalveolar lavage but different in blood. PLoS ONE. 2012;7:e38083. doi: 10.1371/journal.pone.0038083
  133. Trougakos IP, Stamatelopoulos K, Terpos E, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci. 2021;28(1):9. Published 2021 Jan 12. doi: 10.1186/s12929-020-00703-5
  134. Vasileva E.V., Kudryavtsev I.V., Maximov G.V., Verbov V.N., Serebriakova M.K.,Tkachuk A.P., Totolian Areg A. Impact of HIV infection and tuberculosison the peripheral blood T-cell differentiation // Russian Journal of Infectionand Immunity = Infektsiya i immunitet, 2017, vol. 7, no. 2, pp. 151–161.doi: 10.15789/2220-7619-2017-2-151-161
  135. Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol. 2022 Dec 31;210(3):201-216. doi: 10.1093/cei/uxac104
  136. Watad A., Rosenberg V., Tiosano S. et al. Silicone breast implants and the risk of autoimmune diseases: real world analysis. Ann Rheum Dis, 2018, Vol. 77, pp.1191-1192. doi: 10.1093/ije/dyy217
  137. Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5(48):eabd2071. doi: 10.1126/sciimmunol.abd2071
  138. WHO global lists of high burden countries for TB, multidrug/rifampicin-resistant TB (MDR/RR-TB) and TB/HIV, 2021–2025. – 2021 – 16p. ISBN 978-92-4-002943-9
  139. WHO. Coronavirus disease (COVID-19) Pandemic. Geneva: WHO; 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
  140. Winau F, Weber S, Sad S, et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity. 2006;24(1):105-117. doi: 10.1016/j.immuni.2005.12.001
  141. Winheim E, Rinke L, Lutz K, et al. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog. 2021;17(10):e1009742. Published 2021 Oct 6. doi: 10.1371/journal.ppat.100974
  142. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-370. doi: 10.1016/j.jmii.2020.03.005
  143. Wu YE, Zhang SW, Peng WG, Li KS, Li K, Jiang JK, et al.. Changes in lymphocyte subsets in the peripheral blood of patients with active pulmonary tuberculosis. J Int Med Res (2009) 37(6):1742–9. doi: 10.1177/147323000903700610
  144. Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020, 8, 420-422. doi: 10.1016/S2213-2600(20)30076-X
  145. Zaid Y, Doré É, Dubuc I, et al. Chemokines and eicosanoids fuel the hyperinflammation within the lungs of patients with severe COVID-19. J Allergy Clin Immunol. 2021;148(2):368-380.e3. doi: 10.1016/j.jaci.2021.05.032
  146. Zewdie M, Howe R, Hoff ST, Doherty TM, Getachew N, Tarekegne A, et al. Ex-vivo characterization of regulatory T cells in pulmonary tuberculosis patients, latently infected persons, and healthy endemic controls. Tuberculosis. (2016) 100:61–8. doi: 10.1016/j.tube.2016.06.007
  147. Zhang H, Costabel U, Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front Immunol. 2021 Nov 19;12:788502. doi: 10.3389/fimmu.2021.788502
  148. Zhang M, Zhang S. T Cells in Fibrosis and Fibrotic Diseases. Front Immunol. 2020;11:1142. Published 2020 Jun 26. doi: 10.3389/fimmu.2020.01142
  149. Zhang, M, Zheng, X, Zhang, J, Zhu, Y, Zhu, X, Liu, H, Zeng, M, Graner, MW, Zhou B, Chen X. CD19+CD1d+CD5+ B cell frequencies are increased in patients with tuberculosis and suppress Th17 responses. Cellular Immunology. 2012. 274(1-2), 89–97. doi: 10.1016/j.cellimm.2012.01.007
  150. Zhou ER, Arce S. Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis. Int J Mol Sci. 2020 Oct 7;21(19):7398. doi: 10.3390/ijms21197398
  151. Zhuang Z, Lai X, Sun J, et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021;218(4):e20202187. doi: 10.1084/jem.20202187

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Starshinova A., Kudryavtsev I., Rubinstein A., Malkova A., Starshinova A., Dovgalyk I., Kudlay D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies