Features of antifungal therapy during long-lasting infectious process: a clinical case of fungal keratitis and profile of antifungal sensitivity based on assessing biofilm formation

Cover Page

Cite item


Among infectious diseases, opportunistic mycoses hold a special place. There has been accumulating a lot of evidence regarding the clinical and epidemiological aspects of infection caused by Fusarium spp., which global incidence rate among microbial keratitis ranges from 2 to 40% depending on the geographical location of the country. Colonizing mucous membranes, fungi can exist not only in the form of plankton, but form biofilms after surface attachment, which leads to elevated resistance to multiple antifungal agents. Here we describe a clinical case of fungal keratitis due to Fusarium solani by determining profile of the antifungal sensitivity for isolated fungal strains, by taking into account their potential for biofilm formation. We used an F. solani culture isolated from the patient as well as F. solani test culture obtained from the Russian National Collection of Microorganisms. While determining the sensitivity of fungal planktonic cultures to antifungal agents from the azole group (fluconazole, voriconazole), amphotericin B and terbinafine, it was revealed that antimycotics amphotericin B and voriconazole exerted a marked antifungal activity against clinical isolate, whereas the plankton F. solani test culture was more sensitive to all groups of antifungal agents. Due to a long-lasting progressive course of the infectious process and the high biofilm-forming ability of the clinical strain F. solani, the activity of antifungal agents on biofilm cells was modeled and examined in vitro. It was shown that regarding to the fungal biofilms, value of the minimally inhibitory concentration exceeded those for planktonic cultures by 100-fold. The mechanisms of action for antifungal agents on vital parameters of fungal cell structures were analyzed by using confocal laser scanning microscopy after staining samples with propidium iodide and acridine orange for 15 min to detect changes between intact and damaged cell surface. It was found that within the biofilm fungal cells preserved viability even after exposure to high concentrations of antifungals. In addition, despite the fungicidal drug activity at substantial concentrations acting on the biofilm cell membrane, the cell nuclei remained viable. Owing to the presence ot the mechanism of resistance in mycelial fungi shown in the study, it is necessary to take into account and investigate characteristics of biofilms in terms of drug sensitivity that will allow to optimize a choice of antimicrobial therapy.

About the authors

R. I. Valieva

Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University

Author for correspondence.
Email: valievarita@yandex.ru
ORCID iD: 0000-0002-8751-6362

Rita I. Valieva, Junior Researcher, Laboratory of Microbiology; Assistant Professor, V.M. Aristovsky Department of Microbiology 

420015, Kazan, Bol'shaya Krasnaya str., 67

Phone: +7 (927) 403-15-07 

Russian Federation

S. A. Lisovskaya

Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University

Email: s_lisovskaya@mail.ru

PhD (Biology), Leading Researcher, Laboratory of Micology; Associate Professor, V.M. Aristovsky Department of Microbiology


Russian Federation

K. A. Mayanskaya

Ophthalmological Clinic “Eye Surgery of Rascheskov”

Email: kmayansk@gmail.com



Russian Federation

D. V. Samigullin

Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of RAS

Email: samid75@mail.ru

PhD (Biology), Senior Researcher, Laboratory of Biophysics of Synaptic Processes


Russian Federation

G. Sh. Isaeva

Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University

Email: guisaeva@rambler.ru

PhD, MD (Medicine), Professor, Deputy Director; Head of the V.M. Aristovsky Department of Microbiology


Russian Federation


  1. Астахов Ю.С., Скрябина Е.В., Коненкова Я.С., Касымов Ф.О., Богомолова Т.С., Пинегина О.Н. Диагностика и лечение грибковых кератитов // Офтальмологические ведомости. 2013. Т. 6, № 2. С. 75–80. [Astakhov Yu.S., Scriabin E.V., Konenkova Y.S., Kasymov F.O., Bogomolova T.S., Pinegin O.N. Diagnosis and treatment of fungal keratitis. Oftalmologicheskie vedomosti = Ophthalmology Journal, 2013, vol. 6, no. 2, pp. 75–80. (In Russ.)] doi: 10.17816/OV11363-73
  2. Делягин В.М., Мельникова М.Б., Першин Б.С., Серик Г.И., Джандарова Д.Т. Грибковые поражения глаз (диагностика, лечение) // Практическая медицина. 2015. Т. 1. С. 100–105. [Delyagin V.M., Melnikova M.B., Pershin B.S., Serik G.I., Dzhandarova D.T. Fungal eye lesions (diagnosis, treatment). Prakticheskaia meditsina = Practical Medicine, 2015, vol. 1, pp. 100–105. (In Russ.)]
  3. Мальцев С.В., Мансурова Г.Ш. Что такое биопленка? // Практическая медицина. 2011. T. 5. C. 7–11. [Maltsev S.V., Mansurova G.Sh. What is a biofilm? Prakticheskaya meditsina = Practical Medicine, 2011, vol. 5, pp. 7–11. (In Russ.)] doi: 10.21292/2075-1230-2016-94-8-48-53
  4. Полтанова Т.И., Белоусова Н.Ю. Рецидив грибкового кератита в роговичном трансплантате // Казанский медицин ский журнал. 2018. Т. 99, № 1. С. 148–150. [Poltanova T.I., Belousova N.Yu. Relapse of fungal keratitis in the corneal graft. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal, 2018, vol. 99, no. 1, pp. 148–150. (In Russ.)] doi: 10.17816/KMJ2018-148
  5. Рахматулина М.Р., Нечаева И.А. Биопленки микроорганизмов и их роль в формировании резистентности к антибактериальным препаратам // Вестник дерматологии и венерологии. 2015. Т. 91, № 2. C. 58–62. [Rakhmatulin M.R., Nechaev I.A. Biofilms of microorganisms and their role in the formation of resistance to antibacterial drugs. Vestnik dermatologii i venerologii = Bulletin of Dermatology and Venereologists, 2015, vol. 91, no. 2, pp. 58–62. (In Russ.)] doi: 10.25208/0042-4609-2015-91-2-58-62
  6. Шварц Т.А. Биопленки как микробное сообщество // Вестник КГУ. 2015. № 1. С. 41–44. [Schwartz T.A. Biofilms as a microbial community. Vestnik KGU = Bulletin of KSU, 2015, no. 1, pp. 41–44. (In Russ.)]
  7. Ansari Z., Miller D., Galor A. Current thoughts in fungal keratitis: diagnosis and treatment. Curr. Fungal Infect. Rep., 2013, vol. 7, no. 3, pp. 209–218. doi: 10.1007/s12281-013-0150-110.1007/s12281-013-0150-1
  8. Aoun M. Voriconazole: a new weapon against invasive fungal infections. Rev. Med. Brux., 2004, vol. 25, no. 3, pp. 166–171.
  9. Bayguinov P.O., Oakley D.M., Shih C.C., Geanon D.J., Joens M.S., Fitzpatrick J.A.J. Modern laser scanning confocal microscopy. Curr. Protoc. Cytom., 2018, vol. 85, no. 1, pp. 39–45. doi: 10.1002/cpcy.39
  10. Bigley V.H., Duarte R.F., Gosling R.D., Kibbler C.C., Seaton S., Potter M. Fusarium dimerum infection in a stem cell transplant recipient treated successfully with voriconazole. Bone Marrow Transplant., 2004, vol. 3, no. 9, pp. 815–817. doi: 10.1038/sj.bmt.1704660
  11. Bograd A., Seiler T., Droz S., Zimmerli S., Früh B., Tappeiner C. Bacterial and fungal keratitis: a retrospective analysis at a university hospital in Switzerland. Klin. Monatsbl. Augenheilkd., 2019, vol. 236, no. 4, pp. 358–365. doi: 10.1055/a-0774-7756
  12. CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. 3rd ed. Pennsylvania: CLSI, 2017. 63 p.
  13. Coleman J.J. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol. Plant. Pathol., 2016, vol. 17, no. 2, pp. 146–158. doi: 10.1111/mpp.12289
  14. Consigny S., Dhedin N., Datry A., Choquet S., Leblond V., Chosidow O. Successsful voriconazole treatment of disseminated fusarium infection in an immunocompromised patient. Clin. Infect. Dis., 2003, vol. 37, no. 2, pp. 311–313. doi: 10.1086/375842
  15. De Carolis E., Posteraro B., Lass-Flörl C., Tortorano A.M., Sanguinetti G., Fadda M. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect., 2012, vol. 18, no. 5, pp. 475–484. doi: 10.1111/j.1469-0691.2011.03599.x
  16. Dignani M.C., Anaissie E. Human fusariosis. Clin. Microbiol. Infect., 2004, vol. 10, no. 1, pp. 67–75. doi: 10.1111/j.1470-9465.2004.00845.x
  17. Dóczi I., Gyetvai T., Kredics L., Nagy E. Involvement of Fusarium spp. in fungal keratitis. Clin. Microbiol. Infect., 2004, vol. 10, no. 9, pp. 773–776. doi: 10.1111/j.1469-0691.2004.00909.x
  18. Espinel-Ingroff A., Colombo A.L., Cordoba S. International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob. Agents Chemother., 2015, vol. 60, no. 2, pp. 1079–1084. doi: 10.1128/AAC.02456-15
  19. Fernandes M., Vira D., Dey M., Tanzin T., Kumar N., Sharma S. Comparison between polymicrobial and fungal keratitis: clinical features, risk factors, and outcome. Amer. J. Ophthalmol., 2015, vol. 160, no. 5, pp. 873–881. doi: 10.1016/j.ajo.2015.07.028
  20. Chang D.C., Grant G.B., O’Donnell K., Wannemuehler K.A., Noble-Wang J., Rao C.Y., Jacobson L.M., Crowell C.S., Sneed R.S., Lewis F.M., Schaffzin J.K., Kainer M.A., Genese C.A., Alfonso E.C., Jones D.B., Srinivasan A., Fridkin S.K., Park B.J. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA, 2006, vol. 296, no. 8, pp. 953–963. doi: 10.1001/jama.296.8.953
  21. Guarro J., Pujol I., Mayayo E. In vitro and in vivo experimental activities of antifungal agents against Fusarium solani. Antimicrob. Agents Chemother., 1999, vol. 43, no. 5, pp. 1256–1257. doi: 10.1128/AAC.43.5.1256
  22. Gupta A.K., Foley K.A. Evidence for biofilms in onychomycosis. Giornale Italiano di Dermatologia e Venereologia, 2019, vol. 154, no. 1, pp. 50–55. doi: 10.23736/S0392-0488.18.06001-7
  23. Homa M., Galgóczy L., Manikandan P., Narendran V., Sinka R., Csernetics A., Vágvölgyi C., Kredics L., Papp T. South Indian isolates of the Fusarium solani species complex from clinical and environmental samples: identification, antifungal susceptibilities, and virulence. Front. Microbiol., 2018, vol. 9: 1052. doi: 10.3389/fmicb.2018.01052
  24. Hoog G.S., Guarro J., Gene J., Figueras M.J. Atlas of Clinical Fungi. 2nd edition. Centraalbureau voor Schimmelcultures, Universitat Rovira i Virgili, 2000. 1126 p.
  25. Lewis R.E., Wiederhold N.P., Klepser M.E. In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrob. Agents Chemother., 2005, vol. 49, no. 3, pp. 945–951. doi: 10.1128/AAC.49.3.945-951.2005
  26. Mascotti K., McCullough J., Burger S.R. HPC Viability Measurement: trypan blue versus acridine orange and propidium iodide. Transfusion, 2000, vol. 40, no. 6, pp. 693–696. doi: 10.1046/j.1537-2995.2000.40060693.x
  27. Mayayo E., Pujol I., Guarro J. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol., 1999, vol. 48, no. 4, pp. 363–366.
  28. Ortoneda M., Capilla J., Pastor F.J., Pujol I., Guarro J. Efficacy of liposomal amphotericin B in treatment of systemic murine fusariosis. Antimicrob. Agents Chemother., 2002, vol. 46, no. 7, pp. 2273–2275. doi: 10.1128/AAC.46.7.2273-2275.2002
  29. Paphitou N.I., Ostrosky-Zeichner L., Paetznick V.L., Rodriguez J.R., Chen E., Rex J.H. In vitro activities of investigational triazoles against Fusarium species: effects of inoculum size and incubation time on broth microdilution susceptibility test results. Antimicrob. Agents Chemother., 2002, vol. 46, no. 10, pp. 3298–3300. doi: 10.1128/AAC.46.10.3298-3300.2002
  30. Perfect J.R., Marr K.A., Walsh T.J., Greenberg R.N., DuPont B., de la Torre-Cisneros J., Just-Nübling G., Schlamm H.T., Lutsar I., Espinel-Ingroff A., Johnson E. Voriconazole treatment for less-common, emerging, or refractory fungal infections. Clin. Infect. Dis., 2003, vol. 36, no. 9, pp. 1122–1131. doi: 10.1086/374557
  31. Pujol I., Guarro J., Gené J., Sala J. In-vitro antifungal susceptibility of clinical and environmental Fusarium spp. strains. J. Antimicrob. Chemother., 1997, vol. 39, no. 2, pp. 163–167. doi: 10.1093/jac/39.2.163
  32. Sabatelli F., Patel R., Mann P.A., Mendrick C.A., Norris C.C., Hare R., Loebenberg D., Black T.A., McNicholas P.M. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob Agents Chemother., 2006, vol. 50, no. 6, pp. 2009–2015. doi: 10.1128/AAC.00163-06
  33. Tarabishy A.B., Aldabagh B., Sun Y. MyD88 regulation of Fusarium keratitis is dependent on TLR4 and IL-1R1 but not TLR2. J. Immunol., 2008, vol. 181, no. 1, pp. 593–600. doi: 10.4049/jimmunol.181.1.593
  34. Thomas P.A., Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin. Microbiol. Infect., 2013, vol. 19, no. 3, pp. 210–220. doi: 10.1111/1469-0691.12126
  35. Van Burik J.A., Magee P.T. Aspects of fungal pathogenesis in humans. Ann. Rev. Microbiol., 2001, vol. 55, pp. 743–772. doi: 0.1146/annurev.micro.55.1.743
  36. Walther G., Stasch S., Kaerger K., Hamprecht A., Roth M., Cornely O.A., Geerling G., Mackenzie C.R., Kurzai O. Fusarium Keratitis in Germany. J. Clin. Microbiol., 2017, vol. 55, no. 10, pp. 2983–2995. doi: 10.1128/JCM.00649-17
  37. Wu T.G., Keasler V., Mitchell B.M., Wilhelmus K.R. Immunosuppression affects the severity of experimental Fusarium solani keratitis. J. Infect. Dis., 2004, vol. 190, pp. 192–198. doi: 10.1086/421300

Supplementary files

There are no supplementary files to display.

Copyright (c) 2021 Valieva R.I., Lisovskaya S.A., Mayanskaya K.A., Samigullin D.V., Isaeva G.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies