Innate immunity in coronavirus infection
- Authors: Smirnov V.S.1,2, Totolyan A.A.1
-
Affiliations:
- St. Petersburg Pasteur Institute
- JSC MBNPK “Cytomed”
- Issue: Vol 10, No 2 (2020)
- Pages: 259-268
- Section: REVIEWS
- Submitted: 03.04.2020
- Accepted: 06.04.2020
- Published: 09.04.2020
- URL: https://iimmun.ru/iimm/article/view/1440
- DOI: https://doi.org/10.15789/2220-7619-III-1440
- ID: 1440
Cite item
Full Text
Abstract
About the authors
V. S. Smirnov
St. Petersburg Pasteur Institute; JSC MBNPK “Cytomed”
Author for correspondence.
Email: vssmi@mail.ru
ORCID iD: 0000-0002-2723-1496
Vyacheslav S. Smirnov – PhD, MD (Medicine), Professor, Leading Researcher, Laboratory Molecular Immunology, St. Petersburg Pasteur Institute; Head Researcher, JSC MВSPC “Cytomed”
197101, St. Petersburg, Mira str., 14
Phone: +7 911 948-59-22 (mobile)
Areg A. Totolyan
St. Petersburg Pasteur Institute
Email: totolian@pasteurorg.ru
ORCID iD: 0000-0003-4571-8799
RAS Full Member, PhD, MD (Medicine), Professor, Head of the Department of Immunology, Pavlov First St. Petersburg State Medical University; Director, St. Petersburg Pasteur Institute
St. Petersburg
РоссияReferences
- Никифоров В.В., Суранова Т.Г., Миронов А.Ю., Забозлаев Ф.Г. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. Москва, 2020. 48 с.
- Смирнов В.С., Зарубаев В.В., Петленко С.В. Биология возбудителей и контроль гриппа и ОРВИ. СПб.: Гиппократ, 2020. 336 c.
- Amer H.M. Bovine-like Coronaviruses in domestic and wild ruminants Anim. Health Res. Rev., 2018, vol. 19, no. 2, pp. 113–124. doi: 10.1017/S1466252318000117
- Ang A., Pullar J.M., Currie M.J., Vissers M.C.M. Vitamin C and immune cell function in inflammation and cancer. Biochem. Soc. Trans., 2018, vol. 46, no. 5, pp. 1147–1159. doi: 10.1042/BST20180169
- Bowie A.G., O’Neill L.A.J. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. J. Immunol., 2000, vol. 165, pp. 7180–7188. doi: 10.4049/jimmunol.165.12.7180
- Broz P., Dixit V.M. Inflammasomes: mechanism of assembly, regulation and signal-ling. Nat. Rev. Immunol., 2016, vol. 16, pp. 407–420. doi: 10.1038/nri.2016.58
- Cameron M.J., Bermejo-Martin J.F., Danesh A., Muller M.P., Kelvin D.J. Human Immunopatho-genesis of Severe Acute Respiratory Syndrome (SARS). Virus Res., 2008, vol. 133, no. 1, pp. 13–19. doi: 10.1016/j.virusres.2007.02.014
- Carr A.C., Maggini S. Vitamin C and immune function. Nutrients, 2017, vol. 9, no. 11, p. 1211. doi: 10.3390/nu9111211
- Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., S. Perlman. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell. Host. Microbe, 2016, vol. 19, no. 2, pp. 181–193. doi: 10.1016/j.chom.2016.01.007
- Channappanavar R., Fehr A. R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M., Sompallae R., McCray P.B. Jr, Meyerholz D.K., Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest., 2019, vol. 129, no. 9, pp. 625–3639. doi: 10.1172/JCI126363
- Channappanavar R. Perlman S. Pathogenic human coronavirus infections: causes and con-sequences of cytokine storm and immunopathology. Semin. Immunopathol., 2017, vol. 39, pp. 529–539. doi: 10.1007/s00281-017-0629
- Chen I-Y., Moriyama M., Chang M.-F., Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol., 2019, vol. 10, p. 50. doi: 10.3389/fmicb.2019.00050
- Chien J.-Y., Hsueh P.-R., Cheng W.-C., Yu C.-J., Yang P.-C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 2006, vol. 11, no. 6, pp. 715–722. doi: 10.1111/j.14401843.2006.00942.x
- Cong Y., Hart B. J., Gross R., Zhou H., Frieman M., Bollinger L., Wada J. Hensley L.E., Jahrling P.B., Dyall J., Holbrook M.R. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One, 2018, vol. 13, no. 3, pp. e0194868. doi: 10.1371/journal.pone.0194868
- Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019 vol. 17, pp. 181–192. doi: 10.1038/s41579-018-0118-9
- DeDiego M.L., Nieto-Torres J.L. Jimenez-Guarde ño J.M, Regla-Nava J.A., Castaño-Rodriguez C., Fernandez-Delgado R., Usera F., Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res., 2014, vol. 19, no. 194, pp. 124–137. doi: 10.1016/j.virusres.2014.07.024.
- Drosten C., G ünther S., Preiser W., van der Werf S., Brodt H.-R., Becker S., Rabenau H., Pan-ning M., Kolesnikova L., Fouchier R.A.M., Berger A., Burgui ère A.-M, Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.-C., M üller S., Rickerts V., Stürmer M., Vieth S., Klenk H.-D., Osterhaus A.D.M.E., Schmitz H., Doerr H.W. Identification of a novel corona-virus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, vol. 348, no. 20, pp. 1967–1976. doi: 10.1056/NEJMoa030747
- Feng B, Zhang Q, Wang J, Dong H., Mu X., Hu G., Zhang T. IFIT1 expression patterns induced by H9N2 virus and inactivated viral particle in human umbilical vein endothelial cells and bronchus epithelial cells. Mol. Cells, 2018, vol. 41, no. 4, pp. 271–281. doi: 10.14348/molcells.2018.2091.
- Gao J., Tian Z., Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends., 2020, vol. 14, no. 1, pp. 72–73. doi: 10.5582/bst.2020.01047
- Grainger J., Boachie-Ansah G. Anandamide-induced relaxation of sheep coronary arter-ies: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels. Br. J. Pharmacol., 2001, vol. 134, no. 5, pp. 1003–1012. doi: 10.1038/sj.bjp.0704340
- Gralinski L.E., Bankhead III A., Jeng S., Menachery V.D., Proll S., Belisle S.E., Matzke M., Webb-Robertson B.-J.M., Luna M.L., Shukla A.K., Ferris M.T., Bolles M., Chang J., Aicher L., Waters K.M., Smith R.D., Metz T.O., Law G.L., Katze M.G., McWeeney S., Baric R.S. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio., 2013, vol. 4, no 4: e00271-13. doi: 10.1128/mBio.00271-13
- Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. J. Pathol., 2015, vol. 235, no. 2, pp. 185–195. doi: 10.1002/path.4454.
- Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, vol. 21, no. 7, pp. 677–687. doi: 10.1038/nm.3893
- Guo Y.-R., Cao Q.-D., Hong Z.-S., Tan Y.-Y., Chen S.-D., Jin H.-J., K.-S. Tan, Wang D.-Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, vol. 7, no. 1, p 11. doi: 10.1186/s40779-020-00240-0
- He Y., Hara H., N úñ ez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci., 2016, vol. 4, no. 12, pp. 1012–1021 doi: 10.1016/j.tibs.2016.09.002
- Hemil ä H. Vitamin C and Infections. Nutrients, 2017, vol. 9, no. 4, p. 339. doi: 10.3390/nu9040339.
- Hemil ä H., Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev., 2013, no. 1: CD000980. doi: 10.1002/14651858.CD000980.pub4
- Hendrickson C.M., Matthay M.A. Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic. Semin. Respir. Crit. Care Med., 2013, vol. 34, no. 4, pp. 475–486. doi: 10.1055/s-0033-1351122.
- Hornung V., Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur. J. Immunol., 2010, vol. 40, pp. 20–623. doi: 10.1002/eji.200940185.
- Humphries E.S.A., Dart C. Neuronal and cardiovascular potassium channels as therapeutic drug targets. J. Biomol. Screen., 2015, vol. 20, no. 9, pp. 1055–1073. doi: 10.1177/1087057115601677
- Ishiguro T., Kobayashi Y., Uozumi R., Takata N., Takaku Y., Kagiyama N., Kanauchi T., Shimizu Y., Takayanagi N. Viral pneumonia requiring differentiation from acute and progressive diffuse interstitial lung diseases. Intern. Med., 2019, vol. 58, no. 24, pp. 3509–3519. doi: 10.2169/internalmedicine.2696-19
- Jacobs S.R., Damania B. NLRs, inflammasomes, and viral infection. J. Leukoc. Biol., 2012, vol. 92, no. 3, pp. 469–477. doi: 10.1189/jlb.0312132
- Khomich O.A., Kochetkov S.N., Bartosch B. Ivano A.V. Redox biology of respiratory viral infections. Viruses, 2018, vol. 10, no. 8, pp. 392. doi: 10.3390/v10080392.
- Kim E.S., Choe P.G., Park W.B., Oh H.S., Kim E.J., Nam E.Y., Na S.H., Kim M. Song K.H., Bang J.H., Park S.W., Kim H.B., Kim N.J., Oh M.D. Clinical progression and cytokine profiles of middle east respiratory syndrome coronavirus infection. J. Korean Med. Sci., 2016, vol. 31, no. 11, pp. 1717–1725. doi: 10.3346/jkms.2016.31.11.1717
- Kopecky-Bromberg S.A., Martinez-Sobrido L., Frieman M., Baric R.A., Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol., 2007, vol. 81, no. 2, pp. 548–557. doi: 10.1128/JVI.01782-06.
- Kuhn J.H., Li W., Choe H., Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol. Life Sci., 2004, vol. 61, no. 21, pp. 2738–43. doi: 10.1007/s00018-004-4242-5
- Latz E., Xiao T.S., Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, vol. 13, pp. 397–411. doi: 10.1038/nri3452
- Li G. Fan Y. Lai Y. Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q., Wu J. Coronavirus infections and immune responses. J. Med. Virol., 2020, vol. 92, pp. 424–432. doi: 10.1002/jmv.25685
- Li S., Yuan L., Dai G., Chen R.A., Liu D.X., Fung T.S. Regulation of the ER stress response by the ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis. Front. Microbiol., 2020, vol. 10, p. 322. doi: 10.3389/fmicb.2019.03022
- Lui P.-Y., Wong L.-Y. R., Fung C.-L., Siu K.-L., Yeung M.-L., Yuen K.-S., Chan C.-P., Woo P.C.-Y., Yuen K.-Y., Jin D.-Y. Middle East respiratory syndrome corona-virus M protein suppresses type I interferon expression through the inhibition of TBK1dependent phosphorylation of IRF3. Emerg. Microbes Infect., 2016, vol. 5, no. 4: e39. doi: 10.1038/emi.2016.33
- Mackay I.M., Arden K.E. MERS coronavirus: diagnostics, epidemiology and transmission. Virol. J., 2015, vol. 12, p. 222. doi: 10.1186/s12985-015-0439-5
- Marku š i ć M., Š antak M., Ko š uti ć -Gulija T., Jergovi ć M., Jug R., For č i ć D. Induction of IFN-α subtypes and their antiviral activity in mumps virus infection. Viral Immunol., 2014, vol. 27, no. 10, pp. 497–505. doi: 10.1089/vim.2014.0028
- Marmolejo-Murillo L.G., Ar é chiga-Figueroa I.A., Cui M., Moreno-Galindo E.G., Navarro-Polanco R.A., S á nchez-Chapula J.A., Ferrer T., Rodr íguez-Menchaca A.A. Inhibition of Kir4.1 potassium channels by quinacrine. Brain Res., 2017, vol. 1663, pp. 87–94. doi: 10.1016/j.brainres.2017.03.009
- Mart ín-Vicente M., Medrano L.M., Resino S., García-Sastre A., Martínez I. TRIM25 in the regulation of the antiviral innate immunity. Front. Immunol., 2017, vol. 8, p. 1187. doi: 10.3389/fimmu.2017.01187
- Menachery V.D., Mitchell H.D., Cockrell A.S., Gralinski L.E., Yount B.L. Jr, Graham R.L., McAnarney E.T., Douglas M.G., Scobey T., Beall A., Dinnon 3 rd K., Kocher J.F., Hale A.E., Stratton K.G., Waters K.M., Baric R.S. MERS-CoV accessory ORFs play key role for infection and pathogenesis. mBio, 2017, vol. 8, no. 4. doi: 10.1128/mBio.00665-17
- Mubarak A., Alturaikiand W., Hemida M.G. Middle East respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development. J. Immunol. Res., 2019, p. 6491738. doi: 10.1155/2019/6491738.
- Mu ñ oz-Planillo R., Kuffa P., Mart í nez-Col ó n G., Smith B.L., Rajendiran T.M., N úñ ez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate. Matter. Immunity, 2013, vol. 38, no. 6, pp. 1142–1153. doi: 10.1016/j.immuni.2013.05.016
- Murakami T., Ockinger J., Yu J., Byles V., McColl A., Hofer A.M., Horng T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 11282–11287. doi: 10.1073/pnas.1117765109
- Narayanan K., Huang C., Makino S. SARS coronavirus accessory proteins. Virus Res., 2008, vol. 133, no. 1, pp. 113–121. doi: 10.1016/j.virusres.2007.10.009
- Nelemans T., Kikkert M. Viral Innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses, 2019, vol. 11, no. 10, p. 961. doi: 10.3390/v11100961
- Nieto-Torres J. L., Verdiá-Báguena C., Jimenez-Guardeño J.M., Regla-Nava J.A., Castaño-Rodriguez C., Fernandez-Delgado R., Torres J., Aguilella V.M., Enjuanes L. Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome. Virology, 2015, vol. 485, pp. 330–339. doi: 10.1016/j.virol.2015.08.010
- Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol., 2020, vol. 38, no. 1, pp. 1–9. doi: 10.12932/AP-200220-0772
- Rathinam V.A.K., Chan F.K.-M. Inflammasome, inflammation and tissue homeostasis. Trends. Mol. Med., 2018, vol. 24, no. 3, pp. 304–318. doi: 10.1016/j.molmed.2018.01.004
- Shi C.-S., Qi H.-Y., Boularan C., Huang N.-N., Abu-Asab M., Shelhamer J.H., Kehrl J.H. SARS-CoV ORF9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol., 2014, vol. 193, no. 6, pp. 30803089. doi: 10.4049/jimmunol.1303196
- Shokri S., Mahmoudvand S., Taherkhani R., Farshadpour F. Modulation of the immune response by middle east respiratory syndrome coronavirus. J. Cell. Physiol., 2019, vol. 234, no. 3, pp. 2143–2151. doi: 10.1002/jcp.27155
- Silva da Costa L., Outlioua A., Anginot A., Akarid K., Arnoult D. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell Death Dis., 2019, vol. 10, no. 5, p. 346. doi: 10.1038/s41419-019-1579-0
- Simmons G., Zmora P., Gierer S., Heurich A., P öhlmann S,. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, vol. 100, no. 3, pp. 605–614. doi: 10.1016/j.antiviral.2013.09.028
- Singhal T.A Review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, vol. 87, no. 4, pp. 281–286. doi: 10.1007/s12098-020-03263-6
- Song Z., Xu Y., Bao L., Zhang L., Yu P., Qu Y., Zhu H., Zhao W., Han Y., Qin C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses., 2019, vol. 11, no. 1: 59. doi: 10.3390/v11010059
- Su S., Wong G., Shi W., Liu J., Lai A.C.K., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, vol. 24, no. 6, pp. 490–502. doi: 10.1016/j.tim.2016.03.003
- Thiel V., Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev., 2008, vol. 19, no. 2, pp. 121–132 doi.10.1016/j.cytogfr.2008.01.001
- Tykocki N.R., Boerman E.M., Jackson W.F. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr. Physiol., 2017, vol. 7, no. 2, pp. 485–581. doi: 10.1002/cphy.c160011
- Tynell J., Westenius V., R ö nkk ö E. , Munster V.J., Mel é n K., Ö sterlund P., Julkunen I. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J. Gen. Virol., 2016, vol. 97, no. 2, pp. 344–355. doi: 10.1099/jgv.0.000351
- Van der Meer Y., van Tol H., Locker J.K., Snijder E.J. ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J. Virol., 1998, vol. 72, no. 8, pp. 6689–6698. PMID: 9658116
- Wang K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P., Gong L., Zhang Y., Cui H.-Y., Geng J.-J., Wang B., Sun X.-X., Wang C.-F., Yang X., Lin P., Deng Y.-Q., Wei D., Yang X.-M., Zhu Y.-M., Zhang K., Zheng Z.-H., Miao J.-L., Guo T., Shi Y., Zhang J., Fu L., Wang Q.-Y., Bian H., Zhu P., Chen Z.-N. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Preprint, 2020. doi: 10.1101/2020.03.14.988345
- Wang Y., Shi P., Chen Q., Huang Z., Zou D., Zhang J., Gao X., Lin Z. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J. Mol. Cell Biol., 2019, vol. 11, no. 12, pp. 1069–1082. doi: 10.1093/jmcb/mjz020
- Xu X., Chen P., Wang J., Feng J., Zhou H., Li X., Zhong W., Hao P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, vol. 63, no. 3, pp. 457–460. doi: 10.1007/s11427-020-1637-5
- Yue Y., Nabar N. R., Shi C.-S., Kamenyeva O., Xiao X., Hwang I.-Y., Wang M., Kehrl J.H. SARS-coronavirus open reading frame-3a drives multimodal necrotic cell death. Cell Death Dis., 2018, vol. 9, no. 9, p. 904. doi: 10.1038/s41419-018-0917-y
- Zhao C., Zhao W. NLRP3 Inflammasome — a key player in antiviral responses. Front. Immunol., 2020, vol. 11, p. 211. doi: 10.3389/fimmu.2020.00211
- Zumla A., Chan J.F.W., Azhar E.I. Coronaviruses — drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, vol. 15, no. 5, pp. 327–347. doi: 10.1038/nrd.2015.37