Neuropeptide system parameters in acute herpes zoster

Cover Page

Cite item


The neuropeptides comprise an important part in the nervous system interacting with endocrine and immune systems. Peptide regulators are responsible for the continuity of communicating elements, which support homeostasis, however, despite abundant research examining neuropeptides, not all specific mechanisms and features of interacting proteins with cells and immune components have been uncovered. Objective: to perform a comprehensive assessment of neuropeptide system in patients with herpes zoster. Materials and methods: 106 in-hospital patients were examined diagnosed with herpes zoster within 2016–2019 period. Control group consisted of 30 healthy age- and sex-matched volunteers. Blood serum was collected after verifying diagnosis on day 1. After discharge, patients were monitored for signs of pain syndrome and overall state within 3 months. It allowed to divide patients into 3 groups retrospectively. Group 1 — patients with herpes zoster, accompanied by mild or moderate pain syndrome; group 2 — patients with herpes zoster, accompanied by severe pain; group 3 — patients with herpes zoster, complicated by postherpetic neuralgia. Level of serum protein s100B, myelin basic protein, nerve growth factor, brain-derived neurotrophic factor, neuron specific enolase was measured by using specific reagents purchased from “R&D Diagnostics Inc.” (США). Results. it was found that level of serum protein S100B in all groups was significantly increased compared to control group, showing no inter-group differences. Amount of myelin basic protein in all study groups vs. control was significantly higher. Moreover, level of these parameters in group 2 vs. group 1 and 3 was significantly elevated. In addition, level of nerve growth factor was significantly increased in group 1 vs. groups 2 and 3, whereas in group 3 it was significantly lower than in control and group 2. Brain-derived neurotrophic factor was significantly decreased in all the study groups compared to control, showing no significant intergroup differences. Level of neuron-specific enolase was significantly increased in group 3 vs. control as well as group 1 and 2. The data obtained allowed to identify two parameters for assessing a risk of postherpetic neuralgia in acute herpes zoster, as well as provided deeper insights into the pathogenesis of neuroimmune disorders accompanying herpes zoster.

About the authors

S. V. Knysh

Pacific State Medical University

Author for correspondence.

Sergei V. Knysh – Assistant Professor, Normal and Pathological Physiology Department

690002, Vladivostok, Ostryakova str., 2
Phone: +7 995 773-65-23 

Russian Federation

E. V. Markelova

Pacific State Medical University


PhD, MD (Medicine), Professor, Head of Normal and Pathological Physiology Department


Russian Federation

A. I. Simakova

Pacific State Medical University


PhD, MD (Medicine), Associate Professor, Head of Infectious Diseases Department



Russian Federation

A. V. Karaulov

I.M. Sechenov First Moscow State Medical University


PhD, MD (Medicine), RAS Full Member, Head of Clinical Immunology and Allergology Department


Russian Federation


  1. Дюйзен И.В., Иванис В.А., Михайлов А.С., Менчинская Е.С., Манжуло И.В., Огурцова О.С. Исследование содержания нейрональных маркеров при некоторых инфекционных заболеваниях // Тихоокеанский медицинский журнал. 2015. № 60 (2). С. 27–30.
  2. Кныш С.В., Малков В.А., Чагина Е.А., Потапенко А.А. Изменение матриксной металлопротеиназы-9 и ее тканевого ингибитора-1 при опоясывающем герпесе // Российский иммунологический журнал. 2018. № 4. С. 683–685. doi: 10.31857/s102872210002637-5
  3. Кныш С.В., Мачтарева Е.С., Васильева М.М., Малков В.А., Минибаев В.Р. Матриксная металлопротеиназа-2 в патогенезе герпетической невралгии // Российский аллергологический журнал. 2019. № 1 (2). С. 73–75.
  4. Ясенявская А.Л., Самотруева М.А., Башкина О.А., Андреева Л.А., Мясоедов Н.Ф., Тюренков И.Н., Караулов А.В. Нейропептидная регуляция иммунитета // Иммунология. 2018. № 39 (5–6). С. 326–336. doi: 10.18821/0206-4952-2018-39-5-6-326-336
  5. Aloe L., Rocco M.L., Balzamino B.O., Micera A. Nerve growth factor: a focus on neuroscience and therapy. Curr. Neuropharmacol., 2015, no. 13 (3), pp. 294–303. doi: 10.2174/1570159X13666150403231920
  6. Aloe L., Rocco M.L., Balzamino B.O., Micera A. Nerve growth factor: role in growth, differentiation and controlling cancer cell development. J. Exp. Clin. Cancer Res., 2016, no. 35 (1), pp. 116. doi: 10.1186/s13046-016-0395-y
  7. Borodinova A.A., Salozhin S.V. Differences in the biological functions of BDNF and proBDNF in the central nervous system. Neurosci. Behav. Physiol., 2017, vol. 47, no. 3, pp. 251–265.
  8. Cabrera J.R., Viejo-Borbolla A., Alcamí A., Wandosell F. Secreted herpes simplex virus-2 glycoprotein G alters thermal pain sensitivity by modifying NGF effects on TRPV1. J. Neuroinflamm., 2016, no. 13 (1), p. 210. doi: 10.1186/s12974-016-0677-5
  9. Dai C.-X., Hu C.-C., Shang Y.-S., Xie J. Role of Ginkgo biloba extract as an adjunctive treatment of elderly patients with depression and on the expression of serum S100B. Medicine, 2018, no. 97 (39): e12421. doi: 10.1097/md.0000000000012421
  10. Eng J. ROC analysis: web-based calculator for ROC curves. Baltimore: Johns Hopkins University [updated 2014 March 19; cited 2019 July 23]. URL:
  11. Fran ç a K., Lotti T.M. Psycho-neuro-endocrine-immunology: a psychobiological concept. In: Advances in Experimental Medicine and Biology. Adv. Exp. Med. Biol., 2017, no. 996, pp. 123–134. doi: 10.1007/978-3-319-56017-5_11
  12. Gonzales-Gronow M., Pizzo S.V. Relevance of catalytic autoantibodies to myelin basic protein (MBP) in autoimmune disorders. J. Neurol. Neuromed., 2018, no. 3 (4), pp. 75–78.
  13. Goyal A., Failla M.D., Niyonkuru C., Amin K., Fabio A., Berger R.P., Wagner A.K. S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J. Neurotrauma, 2013, no. 30 (11), pp. 946–957. doi: 10.1089/neu.2012.2579
  14. Haque A., Capone M., Matzelle D., Cox A., Banik N. Targeting enolase in reducing secondary damage in acute spinal cord injury in rats. Neurochem. Res., 2017, no. 42 (10), pp. 2777–2787. doi: 10.1007/s11064-017-2291-z
  15. Hedegaard C.J., Chen N., Sellebjerg F., Sørensen P.S., Leslie R.G.Q., Bendtzen K., Nielsen C.H. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology, 2009, no. 128 (pt. 2): e451–e461. doi: 10.1111/j.1365-2567.2008.02999.x
  16. Ji R-R., Xu Z-Z., Wang X., Lo E.H. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol. Sci., 2009, no. 30 (7), pp. 336–340. doi: 10.1016/
  17. Kurapati S., Sadaoka T., Rajbhandari L., Jagdish B., Shukla P., Ali M.A., Kim Y.J., Lee G., Cohen J.I., Venkatesan A. Role of the JNK pathway in varicella-zoster virus lytic infection and reactivation. J. Virol., 2017, no. 91: e00640-17.
  18. Lakhan S.E., Avramut M. Matrix metalloproteinases in neuropathic pain and migraine: friends, enemies, and therapeutic targets. Pain Res. Treat., 2012, no. 2012, pp. 1–10. doi: 10.1155/2012/952906
  19. Miranpuri G.S., Meethal S.V., Sampene E., Chopra A., Buttar S., Nacht C., Moreno N., Patel K., Liu L., Singh A., Singh C.K., Hariharan N., Iskandar B., Resnick D.K. Folic acid modulates matrix metalloproteinase-2 expression, alleviates neuropathic pain, and improves functional recovery in spinal cord-injured rats. Ann. Neurosciences., 2017, no. 24 (2), pp. 74–81. doi: 10.1159/000475896
  20. Morey J.N., Boggero I.A., Scott A.B., Segerstrom S.C. Current directions in stress and human immune function. Curr. Opin. Psychol., 2015, no. 5, pp. 13–17. doi: 10.1016/j.copsyc.2015.03.007
  21. Polcyn R., Capone M., Hossain A., Matzelle D., Banik N.L., Haque A. Neuron specific enolase is a potential target for regulating neuronal cell survival and death: implications in neurodegeneration and regeneration. Neuroimmunol. Neuroinflamm., 2017, no. 4, pp. 254–257. doi: 10.20517/2347-8659.2017.59
  22. Qin G., Gui B., Xie J., Chen L., Chen L., Cui Z., Zhou J., Tan G. Tetrandrine alleviates nociception in a rat model of migraine via suppressing S100B and p-ERK activation in satellite glial cells of the trigeminal ganglia. J. Mol. Neurosci., 2017, no. 64 (1), pp. 29–38. doi: 10.1007/s12031-017-0999-5
  23. Sadaoka T., Depledge D.P., Rajbhandari L., Venkatesan A., Breuer J., Cohen J.I. In vitro system using human neurons demonstrates that varicella-zoster vaccine virus is impaired for reactivation, but not latency. PNAS, 2016, no. 113 (17), pp. E2403–E2412.
  24. Saxena A.K, Lakshman K., Sharma T., Gupta N., Banerjee B.D., Singal A. Modulation of serum BDNF levels in postherpetic neuralgia following pulsed radiofrequency of intercostal nerve and pregabalin. Pain Management, 2016, no. 6 (3), pp. 217–227.
  25. Shubayev V., Strongin A., Yaksh T. Role of myelin auto-antigens in pain: a female connection. Neural Regen. Res., 2016, no. 11 (6), pp. 890–891. doi: 10.4103/1673-5374.184452
  26. Sorci G., Riuzzi F., Arcuri C., Tubaro C., Bianchi R., Giambanco I., Donato R. S100B protein in tissue development, repair and regeneration. World J. Biol. Chem., 2013, no. 4 (1), pp. 1–12. doi: 10.4331/wjbc.v4.i1.1
  27. Villarreal A., Seoane R., Gonz á lez Torres A., Rosciszewski G., Angelo M.F., Rossi A., Barker P.A., Ramos A.J. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J. Neurochemistry, 2014, no. 131 (2), pp. 190–205. doi: 10.1111/jnc.12790
  28. Weil M.T., Möbius W., Winkler A., Ruhwedel T., Wrzos C., Romanelli E., Bennett J.L., Enz L., Goebels N., Nave K.A., Kerschensteiner M., Schaeren-Wiemers N., Stadelmann C., Simons M. Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases. Cell Rep., 2016, no. 16 (2), pp. 314–322. doi: 10.1016/j.celrep.2016.06.008
  29. Wu C., Li C., Hou W., Chiang P., Tsai K. Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Scientific Reports, 2016, no. 6, p. 27358.
  30. Zhang P., Tan C-W., Chen G-H., Ge Y-J., Xu J., Xia L., Wang F., Li X-Y., Kong X-Y. Patients with chronic insomnia disorder have increased serum levels of neurofilaments, neuron-specific enolase and S100B: does organic brain damage exist? Sleep Medicine, 2018, no. 48, pp. 163–171. doi: 10.1016/j.sleep.2017.12.012
  31. Zhao G., Zhang C., Chen J., Su Y., Zhou R., Wang F., Xia W., Huang J., Wang Z., Hu Y., Cao L., Guo X., Yuan C., Wang Y., Yi Z., Lu W., Wu Y., Wu Z., Hong W., Peng D., Fang Y. Ratio of mBDNF to proBDNF for differential diagnosis of major depressive disorder and bipolar depression. Molecular Neurobiology, 2016, no. 54 (7), pp. 5573–5582. doi: 10.1007/s12035-016-0098-6

Supplementary files

There are no supplementary files to display.

Copyright (c) 2020 Knysh S.V., Markelova E.V., Simakova A.I., Karaulov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies