Effects of experimental protein-containing pneumococcal preparations on maturation of murine dendritic cells

Cover Page


Cite item

Full Text

Abstract

Dendritic cells as the most active and highly specialized antigen presenting cells, play a key role in initiating immune responses. Currently, generation of medications activating dendritic cells for development of anti-infective and anticancer vaccines is of highly relevance. Preparations of microbial origin are promising to augment activity of dendritic cells, because they carry innate immune ligands for Toll-like receptors. Such preparations include experimental protein-containing pneumococcal preparations, obtained from acetone-inactivated microbial mass of the deposited S. pneumoniae 6B vaccine strain No. 296, followed by aqueous extraction and separation of 30—100 kDa fraction. Dendritic cells were obtained from bone marrow cells of CBA mice (n = 15), and cultured in complete growth medium RPMI-1640 added with recombinant GM-CSF and IL-4 (Biosource, USA). On day 6, experimental protein-containing pneumococcal preparations (50 pl/ml) were administered to the cultured immature dendritic cells. Commercial TNFa (20 ng/ml, Biosource, USA) was used as a standard maturation inducer (positive control). Immunophenotyping of dendritic cells was conducted by using flow cytometry with FITC- and PE-labeled monoclonal antibodies against cell surface receptors: CD34, CD38, CD83, CD86, CD80, CD11c, MHC II, CD14, CD282 (TLR2), CD284 (TLR4), (eBioscience, USA). Studying an effect of preparations on maturation of dendritic cells revealed that morphological characteristics of dendritic cells generated by using experimental protein-containing preparations did not differ significantly between each other as well as those induced by TNFα. The cells were characterized by large sizes, oval or irregular shape, veiled cytoplasm, eccentrically located nucleus and numerous long thin protrusions. Experimental proteincontaining preparations induced in cultured dendritic cells decrease in count of CD34+ immature and TLR2/TLR4+ cells, increased count of cells expressing markers of adhesion (CD38+), activation (MHC II+), costimulation (CD80/ CD86+) and terminal differentiation (CD83+), which may evidence about events of differentiation upon dendritic cell maturation. The 30—100 kDa fraction increased count of cells expressing adhesion molecules to a greater extent than aqueous extract that more pronouncedly stimulated rise in count of dendritic cells bearing costimulatory molecules (p < 0.05). The activity of the examined proteins regarding their effect on CD83+ cells was comparable. Experimental protein-containing antigens derived from pneumococcal vaccine strain were shown to induce maturation of dendritic cells from bone marrow precursors, induce a decrease in the count of TLR2 and TLR4-expressing cells accounting for activating effect on innate immune effectors.

About the authors

N. K. Akhmatova

Mechnikov Scientific Research Institute for Vaccines and Sera

Author for correspondence.
Email: anelly@mail.ru

Nelli K. Akhmatova - PhD, MD (Medicine), Head of the Laboratory of Immunity Regulation.

105064, Moscow, Malyi Kazennyi lane, 5a, Phone: +7 919 776-55-70

Russian Federation

I. M. Gruber

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: igruber_instmech@mail.ru

Nelli K. Akhmatova - PhD, MD (Medicine), Head of the Laboratory of Immunity Regulation.

105064, Moscow, Malyi Kazennyi lane, 5a, Phone: +7 919 776-55-70

Russian Federation

O. M. Kukina

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: kukina1994@mail.ru

Junior Researcher, Laboratory of Experimental Microbiology.

Moscow

Russian Federation

E. N. Akhmatova

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: ela.150@yandex.ru

Laboratory Assistant, Laboratory of Immunity Regulation Mechanisms.

Moscow

Russian Federation

I. D. Makarenkova

Somov Scientific Research Institute of Epidemiology and Microbiology

Email: ilona_m@mail.ru

PhD, MD (Medicine), Leading Researcher, Laboratory of Immunology.

Vladivostok

Russian Federation

V. A. Stolpnikova

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: Stolpnikova@yandex.ru

PhD (Biology), Senior Researcher, Laboratory of Mechanisms of Immunity Regulation.

Moscow

Russian Federation

E. O. Kalinichenko

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: gladius.domini@gmail.com

Junior Researcher, Laboratory of Mechanisms of Immunity Regulation.

Moscow

Russian Federation

I. A. Bisheva

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: Ibisheva@yandex.ru

Junior Researcher, Laboratory of Mechanisms of Immunity Regulation.

Moscow

Russian Federation

S. A. Skhodova

Mechnikov Scientific Research Institute for Vaccines and Sera

Email: Skhodova2009@yandex.ru

PhD (Medicine), Senior Researcher, Laboratory of Mechanisms of Immunity Regulation.

Moscow

Russian Federation

References

  1. Ахматова Н.К., Киселевский М.В. Врожденный иммунитет: противоопухолевый и противоинфекционный. М.: Практическая медицина, 2008. 256 с.
  2. Aandahl E.M., Michaelsson J., Moretto W.J., Hecht F.M., Nixon D.F. Human CD4+CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J. Virol., 2004, vol. 78, pp. 2454—2459. doi: 10.1128/JVI.78.5.2454-2459.2004
  3. Boor P.P.C., Bosma B.M., Tran K.T.C., van der Laan L.J.W., Hagenaars H., IJzermans J.N.M., Metselaar H.J., Kwekkeboom J. Characterization of antigen-presenting cell subsets in human liver-draining lymph nodes. Front. Immunol., 2019, vol. 14, no. 10: 441. doi: 10.3389/fimmu.2019.00441
  4. Castell-Rodriguez A., Pinon-Zarate G., Herrera-Enriquez M., Jarqum-Yanez K., Medina-Solares I. Dendritic cells: location, function, and clinical implications. In: Biology of Myelomonocytic Cells, ed. A. Ghosh. 2017. doi: 10.5772/63122
  5. Chow K., Lew M., Sutherland R., Zhan Y. Monocyte-derived dendritic cells promote Th polarization, whereas conventional dendritic cells promote Th proliferation. J. Immunol., 2016, vol. 196, no. 2,pp. 624—636. doi: 10.4049/jimmunol.1501202
  6. Dalod M., Chelbi R., Malissen B., Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J., 2014, vol. 33, no. 10, pp. 1104—1116 doi: 10.1002/embj.201488027
  7. Doherty M.T., Arditi M. TB, or not TB: that is the question — does TLR signaling hold the answer? Clin. Invest., 2004, vol. 114, no. 12, pp. 1699-1703. doi: 10.1172/JCI23867
  8. Dowling J.K., Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin. Transl. Immunol., 2016, vol. 5, no. 5: e85. doi: 10.1038/cti.2016.22
  9. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol., 2010, vol. 11, pp. 373-384. doi: 10.1038/ni.1863
  10. Malavasi F., Deaglio S., Funaro A., Ferrero E., Horenstein A.L., Ortolan E., Vaisitti T., Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev., 2008, vol. 88, no. 3, pp. 841-886. doi: 10.1152/physrev.00035.2007
  11. Mastelic-Gavillet B., Balint K., Boudousquie C., Gannon P.O., Kandalaft L.E. Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front. Immunol., 2019, vol. 11, no. 10: 766. doi: 10.3389/fimmu.2019.00766
  12. Paul W.E. Fundamental Immunology, 6th edition. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins, 2008. 1603 p.
  13. Satoh T., Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr., 2016, vol. 4, no. 6, pp. 447—453. doi: 10.1128/microbiolspec.MCHD-0040-2016
  14. Schetters S.T.T., Jong W.S.P., Horrevorts S.K., Kruijssen L.J.W., Engels S., Stolk D., Daleke-Schermerhorn M.H., Garcia-Vallejo J., Houben D., Unger W.W.J., den Haan J.M.M., Luirink J., van Kooyk Y. Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8+ T cells. Acta Biomater., 2019, vol. 91, pp. 248— 257. doi: 10.1016/j.actbio.2019.04.033
  15. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell, 2010, vol. 140, no. 6, pp. 805—820. doi: 10.1016/j.cell.2010.01.022
  16. Zhang J., Supakorndej T., Krambs J.R., Rao M., Abou-Ezzi G., Ye R.Y., Li S., Trinkaus K., Link D.C. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J. Clin. Invest., 2019, vol. 129, no. 7, pp. 2920—2931. doi: 10.1172/JCI124829

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Akhmatova N.K., Gruber I.M., Kukina O.M., Akhmatova E.N., Makarenkova I.D., Stolpnikova V.A., Kalinichenko E.O., Bisheva I.A., Skhodova S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies