The role of infectious agent in development of tooth decay
- Authors: Liubimova A.V.1, Brodina T.V.1, Goncharov A.E.1, Silin A.V.1, Zueva L.P.1, Klimova E.A.2, Belova L.V.1
-
Affiliations:
- North-Western State Medical University named after I.I. Mechnikov
- St. Petersburg State University
- Issue: Vol 10, No 4 (2020)
- Pages: 747-754
- Section: ORIGINAL ARTICLES
- Submitted: 23.01.2019
- Accepted: 14.09.2020
- Published: 26.11.2020
- URL: https://iimmun.ru/iimm/article/view/1138
- DOI: https://doi.org/10.15789/2220-7619-TRO-1138
- ID: 1138
Cite item
Full Text
Abstract
Aim: to assess the relationship between colonization of the oral cavity with S. mutans and different genotypic characteristics and the degree of tooth decay in children.
Materials and methods. 274 children aged 5 to 17 years (153 girls and 121 boys) who received a preventive dental checkup were included in the study. The dental caries experience was assessed by the DMFT index (number of decayed, missing due to caries, and filled teeth), according to WHO recommendations. The plaque was collected with sterile wooden toothpicks from the buccal gingival margin or from fissures of the first molars and placed in 1.5 mL Eppendorf tubes, and then plated on Mitis Salivarius Agar medium (HiMedia, India). 481 strains of S. mutans were selected for further study. DNA was extracted by an express method. Amplification was performed in the CFX-96 thermal cycler (Bio-Rad, USA). Serotyping was performed by multiplex PCR. PCR products were analyzed by gel electrophoresis in 1.5% agarose gel with ethidium bromide (10 mg/mL) manufactured by Helicon, Moscow, and visualized in UV light in transilluminator UVT1 by Biokom. Genotyping was performed according to the methodology (Saarela et al., 1996) with the oligonucleotide primer OPA-02 (5’-TGCCGAGCTG-3’). Strains of S. mutans were studied for the presence of the following genes: gtfB, spaP, cnm, fruA, gtfB, htrA, comE, mutA x(I), mutA (II), mutA (III), nlmAB (IV), adcA, Smu.399, Smu.583, Smu.761, Smu.940c, Smu.1449, Smu.2130.
Results. S. mutans was isolated from all the examined children. Dental decay was detected in 82.4% of the children. Among the strains studied, all 4 serotypes were found: in children with a DMFT = 0 only serotypes k and f were detected; the predominant serotype in children with tooth decay was serotype c (74.7%). 19 genotypes of S. mutans were identified. In children without caries (DMFT = 0), S. mutans did not contain the genes spaP, comE, adcA, Smu.2130, Smu.1449, gtfB, htrA. With the increase in the DMFT index, the frequency of their detection increased. 9 genotypes of S. mutans had all 7 virulence factors. In 94.9% of children colonized by these “virulent” genotypes, high DMFT index scores were observed.
Conclusion. The data obtained indicate that only a limited number of specific strains have a cariogenic potential. Strains of S. mutans belonging to serotypes e and c with a combination of virulence genes spaP, gtfB, comE, adcA, Smu.2130, Smu.1449, and htrA were isolated from children with tooth decay. Strains without these factors did not cause any damage to the teeth. The degree of tooth decay increases with colonization by several genotypes with the combination of virulence factors described above.
Keywords
About the authors
A. V. Liubimova
North-Western State Medical University named after I.I. Mechnikov
Author for correspondence.
Email: lubimova@gmail.com
Anna V. Liubimova - PhD, MD (Medicine), Professor of Epidemiology Department.
191015, St. Petersburg, Kirochnaya str., 41, Phone: +7 906 244-83-22
РоссияT. V. Brodina
North-Western State Medical University named after I.I. Mechnikov
Email: brodina23@gmail.com
PhD Student, Epidemiology Department.
St. Petersburg
РоссияA. E. Goncharov
North-Western State Medical University named after I.I. Mechnikov
Email: phage1@yandex.ru
PhD, MD (Medicine), Assistant Professor, Epidemiology Department.
St. Petersburg РоссияA. V. Silin
North-Western State Medical University named after I.I. Mechnikov
Email: a.silin@szgmu.ru
PhD, MD (Medicine), Professor of the Department of General Practice Dentistry.
St. Petersburg
РоссияL. P. Zueva
North-Western State Medical University named after I.I. Mechnikov
Email: uzueva@mail.ru
PhD, MD (Medicine), Professor, Head of the Epidemiology Department of North-Western.
St. Petersburg РоссияE. A. Klimova
St. Petersburg State University
Email: biberdent@gmail.com
Children’s Dentist, PhD Student, Department of Pediatric Dentistry.
St. Petersburg
РоссияL. V. Belova
North-Western State Medical University named after I.I. Mechnikov
Email: profnutr07@mail.ru
Belova L.V., PhD, MD (Medicine), Professor of the Department of Preventive Medicine and Health.
St. Petersburg РоссияReferences
- Скрипкина Г.И. Комплексный подход к возможности прогнозирования кариозного процесса в детском возрасте на донозологическом этапе развития заболевания // Стоматология для всех. 2011. № 2. С. 34—38.
- Argimon S., Caufield P.W. Distribution of putative virulence genes in Streptococcus mutans strains does not correlate with caries experience. J. Clin. Microbiol., 2011, vol. 49, no. 3, pp. 982—984. doi: 10.1128/JCM.01993-10
- Bottner A., He R.Y., Sarbu A., Nainar S.M.H., Dufour D., Gong S.G., Levesque C.M. Streptococcus mutans isolated from children with severe-early childhood caries form higher levels of persisters. Arch. Oral Biol., 2020, vol. 110: 104601. doi: 10.1016/j.archoralbio.2019.104601
- Carletto-Korber F.P., Gonzalez-Ittig R.E., Jimenez M.G., Cornejo L.S. Serotype diversity of Streptococcus mutans and caries activity in children in Argentina. Eur. J. Paediatr. Dent., 2015, vol. 16, no. 3, pp. 177—180.
- Cheon K., Moser S.A., Wiener H.W., Whiddon J., Momeni S.S., Ruby J.D., Cutter G.R., Childers N.K. Characteristics of Streptococcus mutans genotypes and dental caries in children. Eur. J. Oral Sci., 2013, vol. 121, no. 3, pt. 1, pp. 148—155. doi: 10.1111/eos.12044
- Dame-Teixeira N., Arthur R.A., Parolo C.C., Maltz M. Genotypic diversity and virulence traits of Streptococcus mutans isolated from carious dentin after partial caries removal and sealing. ScientificWorldJournal, 2014, vol. 21:165201. doi: 10.1155/2014/165201
- Fan C.C., Wang W.H., Xu T., Zheng S.G. Risk factors of early childhood caries (ECC) among children in Beijing — a prospective cohort study. BMC Oral Health, 2019, vol. 19, no. 1, p. 34. doi: 10.1186/s12903-019-0721-9
- Gomes M.C., Pinto-Sarmento T.C., Costa E.M., Martins C.C., Granville-Garcia A.F., Paiva S.M. Impact of oral health conditions on the quality of life of preschool children and their families: a cross-sectional study. Health Qual. Life Outcomes, 2014, no. 12, pp. 55- 63. doi: 10.1186/1477-7525-12-55
- Kreth J., Merritt J., Zhu L., Shi W., Qi F. Cell density- and ComE-dependent expression of a group of mutacins and mutacin-like gene in Streptococcus mutans. FEMSMicrobiol. Lett., 2006, vol. 265, no. 1, pp. 11-17. doi: 10.1111/j.1574-6968.2006.00459.x
- Lembo F.L., Longo P.L., Ota-Tsuzuki C., Rodrigues C.R., Mayer M.P. Genotypic and phenotypic analysis of Streptococcus mutans from different oral cavity sites of caries-free and caries-active children. Oral Microbiol. Immunol., 2007, vol. 22, no. 5, pp. 313-319. doi: 10.1111/j.1399-302X.2007.00361.x
- Nakano K., Ooshima T. Serotype classification of Streptococcus mutans and its detection outside the oral cavity. Future Microbiol., 2009, vol. 4, no. 7,pp. 891-902. doi: 10.2217/fmb.09.64
- Oral Health Survey. Basic methods; 5th ed. Geneva: World Health Organization, 2013. 70p.
- Palmer E.A., Nielsen T., Peirano P., Nguyen A.T., Vo A., Nguyen A., Jackson S., Finlayson T., Sauerwein R., Marsh K., Edwards I., Wilmot B., Engle J., Peterson J., Maier T., Machida C.A. Children with severe early childhood caries: pilot study examining mutans streptococci genotypic strains after full-mouth caries restorative therapy. Pediatr. Dent., 2012, vol. 34, no. 2, pp. 1-10.
- Palmer E.A., Vo A., Hiles S.B., Peirano P., Chaudhry S., Trevor A., Kasimi I., Pollard J., Kyles C., Leo M., Wilmot B., Engle J., Peterson J., Maier T., Machida C.A. Mutans streptococci genetic strains in children with severe early childhood caries: follow-up study at one-year post-dental rehabilitation therapy. J. Oral Microbiol., 2012, no. 4, pp. 167-173. doi: 10.3402/jom.v4i0.19530
- Rincon-Rodriguez R.J., Parada-Sanchez M.T., Bedoya-Correa C.M., Arboleda-Toro D. Genetic diversity of Streptococcus mutans serotype c isolated from white spot and cavitated caries lesions from schoolchildren. Arch. Oral Biol, 2019, vol. 100, pp. 33-41. doi: 10.1016/j.archoralbio.2019.02.003
- Struzycka I. The oral microbiome in dental caries. Pol. J. Microbiol., 2014, vol. 63, no. 2, pp. 127-135.
- Suzuki S., Ukiya T., Kawauchi Y., Ishii H., Sugihara N. Decision tree analysis for factors associated with dental caries in school-aged children in Japan. Community Dent. Health., 2018, vol. 35, no. 4, pp. 247-251. doi: 10.1922/CDH_4409Suz.uki05
- Zhou Q., Qin X., Qin M., Ge L. Genotypic diversity of Streptococcus mutans and Streptococcus sobrinus in 3-4-year-old children with severe caries or without caries. Int. J. Paediatr. Dent., 2011, vol. 21, no. 6, pp. 422-431. doi: 10.1111/j.1365-263X.2011.01145.x