Состав микробиоты кишечника и популяций циркулирующих Th-клеток у пациентов с рассеянным склерозом

Обложка


Цитировать

Полный текст

Аннотация

В настоящее время роль микробиоты кишечника активно изучается при многих заболеваниях центральной нервной системы (ЦНС), в том числе при рассеянном склерозе (РС). В патогенезе РС ключевую роль играют аутореактивные к антигенам миелина CD4+ Th1- и Th17-клетки. Учитывая патогенетические особенности рассматриваемого аутоиммунного заболевания в данном исследовании уделено внимание анализу связи микробиоценоза кишечника с различными субпопуляциями Th-клеток. Цель исследования — оценить уровни отдельных представителей микробиоты кишечника у пациентов с РС и сопоставить их с уровнем циркулирующих в крови субпопуляций Th. В исследовании у 112 (72 женщины и 40 мужчин) пациентов с РС разной тяжести и длительности заболевания бактериологическим методом и с помощью полимеразной цепной реакции в режиме реального времени оценен уровень симбиотических и оппортунистических видов микроорганизмов. Субпопуляции Th-клеток (Th1, Th2, Th17, Th1/Th17, Th17/Th22, DP Th17), различающиеся набором хемокиновых рецепторов, определяли методом проточной цитофлуориметрии. Показана связь отдельных представителей микробиоты кишечника с тяжестью, длительностью и скоростью прогрессирования заболевания, а также с фенотипами иммунных клеток. Наибольшая связь уровня циркулирующих иммунных клеток наблюдалась с уровнем Lactobacillus spp., Enterococcus spp. и Enterobacter spp., причем действие Enterococcus spp. на субпопуляции Th клеток было синергично с действием Enterobacter spp. и антагонистично с Lactobacillus spp. Мы предполагаем, что выявление механизмов прямого и опосредованного влияния микробиоты на иммунную систему в дальнейшем будет способствовать разработке принципиально новых стратегий терапии РС.

Об авторах

И. Н. Абдурасулова

ФГБНУ Институт экспериментальной медицины;
ГБОН ВПО Санкт-Петербургский государственный педиатрический медицинский университет

Автор, ответственный за переписку.
Email: i_abdurasulova@mail.ru

к.б.н., ведущий научный сотрудник физиологического отдела им. И.П. Павлова;

доцент кафедры медицинской биофизики,

197376, Санкт-Петербург, ул. Акад. Павлова

Россия

Е. А. Тарасова

ФГБНУ Институт экспериментальной медицины

Email: tarasovahellen@mail.ru

научный сотрудник физиологического отдела им. И.П. Павлова,

Санкт-Петербург

Россия

И. В. Кудрявцев

ФГБНУ Институт экспериментальной медицины;
ГБОУ ВПО Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова МЗ РФ

Email: igorek1981@yandex.ru

к.б.н., старший научный сотрудник лаборатории общей иммунологии;

доцент кафедры иммунологии,

Санкт-Петербург

Россия

И. Г. Негореева

ФГБУН Институт мозга человека им. Н.П. Бехтеревой РАН

Email: nip@ihb.spb.ru

к.м.н., научный сотрудник лаборатории нейроиммунологии,

Санкт-Петербург

Россия

А. Г. Ильвес

ФГБУН Институт мозга человека им. Н.П. Бехтеревой РАН

Email: ailves@hotmail.com

к.м.н., старший научный сотрудник лаборатории нейроиммунологии,

Санкт-Петербург

Россия

М. К. Серебрякова

ФГБНУ Институт экспериментальной медицины

Email: m-serebryakova@yandex.ru

научный сотрудник отдела иммунологии,

Санкт-Петербург

Россия

Е. И. Ермоленко

ФГБНУ Институт экспериментальной медицины;
Санкт-Петербургский государственный университет

Email: lermolenko1@yandex.ru

д.м.н., зав. лабораторией биомедицинской микроэкологии,

Санкт-Петербург

Россия

Е. В. Ивашкова

ФГБУН Институт мозга человека им. Н.П. Бехтеревой РАН

Email: ivashkova@ihb.spb.ru

к.м.н., научный сотрудник лаборатории нейроиммунологии,

Санкт-Петербург

Россия

А. В. Мацулевич

ФГБНУ Институт экспериментальной медицины

Email: cat_fly@bk.ru

научный сотрудник физиологического отдела им. И.П. Павлова, 

Санкт-Петербург

Россия

А. Е. Татаринов

ФГБНУ Институт экспериментальной медицины

Email: alex2ta@mail.ru

зав. неврологическим отделением клиники,

Санкт-Петербург

Россия

И. Д. Столяров

ФГБУН Институт мозга человека им. Н.П. Бехтеревой РАН

Email: sid@ihb.spb.ru

д.м.н., профессор, зав. лабораторией нейроиммунологии,

Санкт-Петербург

Россия

В. М. Клименко

ФГБНУ Институт экспериментальной медицины

Email: klimenko_victor@mail.ru

д.м.н., профессор, руководитель физиологического отдела,

Санкт-Петербург

Россия

А. Н. Суворов

ФГБНУ Институт экспериментальной медицины;
Санкт-Петербургский государственный университет

Email: alexaner_suvorov1@hotmail.com

зав. отделом молекулярной микробиологии;

член-корреспондент РАН, д.м.н., профессор, зав. кафедрой фундаментальных проблем медицины и медицинских технологий Факультета стоматологии и медицинских технологий,

Санкт-Петербург

Россия

Список литературы

  1. Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И., Елисеев А.В., Мацулевич А.В., Бисага Г.Н., Скулябин Д.И., Суворов А.Н., Клименко В.М. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67.
  2. Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В., Елисеев А.В., Ермоленко Е.И., Суворов А.Н., Клименко В.М. Изменение качественного и количественного состава кишечной микробиоты у крыс при экспериментальном аллергическом энцефаломиелите // Российский физиологический журнал им. И.М. Сеченова. 2015. Т. 101, № 11. С. 1235–1249.
  3. Абдурасулова И.Н., Ермоленко Е.И., Мацулевич А.В., Абдурасулова К.О., Тарасова Е.А., Кудрявцев И.В., Бисага Г.Н., Суворов А.Н., Клименко В.М. Влияние пробиотических энтерококков и глатирамера ацетат на тяжесть экспериментального аллергического энцефаломиелита у крыс // Российский физиологический журнал им. И.М. Сеченова. 2016. Т. 102, № 4. С. 463–479. doi: 10.1007/s11055-017-0484-1 (In Russ.)
  4. Абдурасулова И.Н., Тарасова Е.А., Никифорова И.Г., Ильвес А.Г., Ивашкова Е.В., Мацулевич А.В., Татаринов А.Е., Шангина Л.В., Ермоленко Е.И., Клименко В.М., Столяров И.Д., Суворов А.Н. Особенности состава микробиоты кишечника у пациентов с рассеянным склерозом, получающих разные ПИТРС // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 8, вып. 2. С. 62–69. doi: 10.17116/jnevro201811808262 (In Russ.)
  5. Кудрявцев И.В., Борисов А.Г., Кробинец И.И., Савченко А.А., Серебрякова М.К., Тотолян А.А. Хемокиновые рецепторы на Т-хелперах различного уровня дифференцировки: основные субпопуляции // Медицинская иммунология. 2016. Т. 18, № 3. С. 239–250. doi: 10.15789/1563-0625-2016-3-239-250 (In Russ.)
  6. Кудрявцев И.В., Ильвес А.Г., Борисов А.Г., Минеев К.К., Петров А.М., Савченко А.А., Серебрякова М.К., Столяров И.Д. CCR6-позитивные Т-хелперы периферической крови при рассеянном склерозе // Цитокины и воспаление. 2016. Т. 15, № 2. С. 166–172.
  7. Кудрявцев И.В., Савицкий В.П. Многоцветный анализ основных субпопуляций Т-хелперов и цитотоксических Т-клеток методом проточной цитофлуориметрии // Российский иммунологический журнал. 2012. Т. 6 (14), № 3 (1). С. 94–97.
  8. Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян А.А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (проект) // Медицинская иммунология. 2012. Т. 14, № 3. С. 255–268. doi: 10.15789/1563-0625-2012-3-255-268 (In Russ.)
  9. Шендеров Б.А., Голубев В.Л., Данилов А.Б., Прищепа А.В. Кишечная микробиота человека и нейродегенеративные заболевания // Поликлиника. 2016. № 1 (cпецвыпуск). С. 7–13.
  10. Abdurasulova I.N., Matsulevich A.V., Tarasova E.A., Kudrjavtsev I.V., Serebrjakova M.K., Ermolenko E.I., Bisaga G.N., Klimenko V.M., Suvorov A.N. Enterococcus faecium L3 and glatiramer acetate ameliorate of experimental allergic encephalomyelitis (EAE) in rats by affecting different populations of immune cells. Beneficial Microbes, 2016, vol. 7, no. 5, pp. 719–729. doi: 10.3920/BM2016.0018
  11. Annunziato F., Cosmi L., Liotta F., Maggi E., Romagnani S. Main features of human T helper 17 cells. Ann. NY Acad. Sci., 2013, vol. 1284, pp. 66–70. doi: 10.1111/nyas.12075
  12. Aranami T., Yamamura T. Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol. Int., 2008, vol. 57, no. 2, pp. 115–120. doi: 10.2332/allergolint.R-07-159
  13. Askarian F., Wagner T., Johannessen M., Nizet V. Staphylococcus aureus modulation of innate immune responses through Tolllike (TLRs), (NOD)-like (NLRs) and C-type lectin (CLRs) receptors. FEMS Microbiol. Rev., 2018. doi: 10.1093/femsre/fuy025
  14. Atarashi K., Nishimura J., Shima T., Umesaki Y., Yamamoto M., Onoue M., Yagita H., Ishii N., Evans R., Honda K., Takeda K. ATP drives lamina propria T(H)17 cell differentiation. Nature, 2008, vol. 455, no. 7214, pp. 808–812. doi: 10.1038/nature07240
  15. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I.I., Umesaki Y., Itoh K., Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, vol. 331, no. 6015, pp. 337–341. doi: 10.1126/science.1198469
  16. Aujla S.J., Chan Y.R., Zheng M., Fei M., Askew D.J., Pociask D.A., Reinhart T.A., McAllister F., Edeal J., Gaus K., Husain S., Kreindler J.L., Dubin P.J., Pilewski J.M., Myerburg M.M., Mason C.A., Iwakura Y., Kolls J.K. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med., 2008, vol. 14, no. 3, pp. 275–281. doi: 10.1038/nm1710
  17. Basu R., O’Quinn D.B., Silberger D.J., Schoeb T.R., Fouser L., Ouyang W., Hatton R.D., Weaver C.T. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity, 2012, vol. 37, no. 6, pp. 1061–1075. doi: 10.1016/j.immuni.2012.08.024
  18. Benito-Leon J., Pisa D., Alonso R., Calleja P., Diaz-Sanchez M., Carrasco L. Association between multiple sclerosis and Candida species: evidence from a case-control study. Eur. J. Clin. Microbiol. Infect. Dis., 2010, vol. 29, no. 9, pp. 1139–1145. doi: 10.1007/s10096-010-0979-y
  19. Berer K., Mues M., Koutrolos M., Al Rasbi Z., Boziki M., Johner C., Wekerle H., Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011, vol. 479, pp. 538–541. doi: 10.1038/nature10554
  20. Berer K., Gerdes L.A., Cekanaviciute E., Jia X., Xiao L., Xia Z., Liu C., Klotz L., Stauffer U., Baranzini S.E., Kümpfel T., Hohlfeld R., Krishnamoorthy G., Wekerle H. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. USA, 2017, vol. 114, no. 40, pp. 10719–10724. doi: 10.1073/pnas.1711233114
  21. Brucklacher-Waldert V., Stuerner K., Kolster M., Wolthausen J., Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain J. Neurol., 2009, vol. 132, iss. 12, pp. 3329–3341. doi: 10.1093/brain/awp289
  22. Buscarinu M.C., Cerasoli B., Annibali V., Policano C., Lionetto L., Capi M., Mechelli R., Romano S., Fornasiero A., Mattei G., Piras E., Angelini D.F., Battistini L., Simmaco M., Umeton R., Salvetti M., Ristori G. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: a pilot study. Multiple Sclerosis, 2017, vol. 23, no. 3, pp. 442–446. doi: 10.1177/1352458516652498
  23. Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., Kanner R., Bencosme Y., Lee Y.K., Hauser S.L., Crabtree-Hartman E., Sand I.K., Gacias M., Zhu Y., Casaccia P., Cree B.A.C., Knight R., Mazmanian S.K., Baranzini S.E. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA, 2017, vol. 114, no. 42: e 8943. doi: 10.1073/pnas.1716911114
  24. Chen J., Chia N., Kalari K.R., Yao J.Z., Novotna M., Soldan M.M., Luckey D.H., Marietta E.V., Jeraldo P.R., Chen X., Weinshenker B.G., Rodriguez M., Kantarci O.H., Nelson H., Murray J.A., Mangalam A.K. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep., 2016, vol. 6: 28484. doi: 10.1038/srep28484
  25. Compston A., Coles A. Multiple sclerosis. Lancet, 2008, vol. 372, no. 9648, pp. 1502–1517. doi: 10.1016/S0140-6736(08)61620-7
  26. Cosorich I., Dalla-Costa G., Sorini C., Ferrarese R., Messina M.J., Dolpady J., Radice E., Mariani A., Testoni P.A., Canducci F., Comi G., Martinelli V., Falcone M. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv., 2017, vol. 3, no. 7: e1700492. doi: 10.1126/sciadv.1700492
  27. Cua D.J., Sherlock J., Chen Y., Murphy C.A., Joyce B., Seymour B., Lucian L., To W., Kwan S., Churakova T., Zurawski S., Wiekowski M., Lira S.A., Gorman D., Kastelein R.A., Sedgwick J.D. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003, vol. 421, no. 6924, pp. 744–748. doi: 10.1038/nature01355
  28. Derrien M., Van Baarlen P., Hooiveld G., Norin E., Müller M., de Vos W.M. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front. Microbiol., 2011, vol. 2: 166. doi: 10.3389/ fmicb.2011.00166
  29. Derrien M., Vaughan E.E., Plugge C.M., de Vos W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucindegrading bacterium. Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pt. 5, pp. 1469–1476. doi: 10.1099/ijs.0.02873-0
  30. Duhen T., Geiger R., Jarrossay D., Lanzavecchia A., Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol., 2009, vol. 10, no. 8, pp. 857–863. doi: 10.1038/ni.1767
  31. Durelli L., Conti L., Clerico M., Boselli D., Contessa G., Ripellino P., Ferrero B., Eid P., Novelli F. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann. Neurol., 2009, vol. 65, no. 5, pp. 499–509. doi: 10.1002/ ana.21652
  32. Ermolenko E., Gromova L., Borschev Yu., Voeikova A., Karaseva A., Ermolenko K., Gruzdkov A., Suvorov A. Influence of different probiotic lactic acid bacteria on microbiota and metabolism of rats with dysbiosis. Biosci. Microbiota Food Health, 2013, vol. 32, no. 2, pp. 41–49. doi: 10.12938/bmfh.32.41
  33. Fraga-Silva T.F., Mimura L.A., Marchetti C.M., Chiuso-Minicucci F., França T.G., Zorzella-Pezavento S.F., Venturini J., Arruda M.S., Sartori A. Experimental autoimmune encephalomyelitis development is aggravated by Candida albicans infection. J. Immunol. Res., 2015, 2015: 635052. doi: 10.1155/2015/635052
  34. Fylik H.A., Osborne L.C. The multibiome: the intestinal ecosystem’s influence on immune homeostasis, health, and disease. EbioMedicine, 2016, vol. 13. pp. 46–54. doi: 10.1016/j.ebiom.2016.10.007
  35. Gaboriau-Routhiau V., Rakotobe S., Lécuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M., Brandi G., Eberl G., Snel J., Kelly D., Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity, 2009, vol. 31, no. 4, pp. 677–689. doi: 10.1016/j.immuni.2009.08.020
  36. Ganesh B.P., Klopfleisch R., Loh G., Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One, 2013, vol. 8, no. 9: e74963. doi: 10.1371/journal.pone.0074963
  37. Glenn J.D., Mowry E.M. Emerging concepts on the gut microbiome and multiple sclerosis. J. Interferon Cytokine Res., 2016, vol. 36, no. 6, pp. 347–357. doi: 10.1089/jir.2015.0177
  38. Gurney A.L. IL-22, a Th1 cytokine that targets the pancreas and select other peripheral tissues. Int. Immunopharmacol., 2004, vol. 4, no. 5, pp. 669–677. doi: 10.1016/j.intimp.2004.01.016
  39. Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol., 2010, vol. 28, pp. 623– 667. doi: 10.1146/annurev-immunol-030409-101330
  40. Ivanov I.I., Frutos Rde L., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B., Finlay B.B., Littman D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, vol. 4, no. 4, pp. 337–349. doi: 10.1016/j.chom.2008.09.009
  41. Jangi S., Gandhi R., Cox L.M., Li N., von Glehn F., Yan R., Patel B., Mazzola M.A., Liu S., Glanz B.L., Cook S., Tankou S., Stuart F., Melo K., Nejad P., Smith K., Topçuolu B.D., Holden J., Kivisäkk P., Chitnis T., De Jager P.L., Quintana F.J., Gerber G.K., Bry L., Weiner H.L. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun., 2016, vol. 7: 12015. doi: 10.1038/ ncomms12015
  42. Kebir H., Kreymborg K., Ifergan I., Dodelet-Devillers A., Cayrol R., Bernard M., Giuliani F., Arbour N., Becher B., Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, vol. 13, no. 10, pp. 1173–1175. doi: 10.1038/nm1651
  43. Klemann C., Raveney B.J.E., Klemann A.K., Ozawa T., von Hörsten S., Shudo K., Oki S., Yamamura T. Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am. J. Pathol., 2009, vol. 174, no. 6, pp. 2234– 2245. doi: 10.2353/ajpath.2009.081084
  44. Korn T., Bettelli E., Gao W., Awasthi A., Jäger A., Strom T.B., Oukka M., Kuchroo V.K. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007, vol. 448, no. 7152, pp. 484–487. doi: 10.1038/nature05970
  45. Langrish C.L., Chen Y., Blumenschein W.M., Mattson J., Basham B., Sedgwick J.D., McClanahan T., Kastelein R.A., Cua D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med., 2005, vol. 201, no. 2, pp. 233– 240. doi: 10.1084/jem.20041257
  46. Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, suppl. 1, pp. 4615–4622. doi: 10.1073/pnas. 1000082107
  47. Levinthal D.J., Rahman F., Nusrat S., O’Leary M., Heyman R., Bielefeldt K. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Mult. Scler. Int., 2013, 2013: 319201. doi: 10.1155/2013/319201
  48. Liang S.C., Tan X.Y., Luxenberg D.P., Karim R., Dunussi-Joannopoulos K., Collins M., Fouser L.A. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med., 2006, vol. 203, no. 10, pp. 2271–2279. doi: 10.1084/jem.20061308
  49. Linden J.R., Ma Y., Zhao B., Harris J.M., Rumah K.R., Schaeren-Wiemers N.S., Vartanian T. Clostridium perfringens epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination. mBio, 2015, vol. 6, no. 3: e0513–14. doi: 10.1128/mBio.02513-14
  50. Lock C., Hermans G., Pedotti R., Brendolan A., Schadt E., Garren H., Langer-Gould A., Strober S., Cannella B., Allard J., Klonowski P., Austin A., Lad N., Kaminski N., Galli S.J., Oksenberg J.R., Raine C.S., Heller R., Steinman L. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med., 2002, vol. 8, no. 5, pp. 500–508. doi: 10.1038/nm0502-500
  51. Lubberts E. The IL-23-IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol., 2015, vol. 11, no. 10: 562. doi: 10.1038/nrrheum.2015.128
  52. Martins T.B., Rose J.W., Jaskowski T.D., Wilson A.R., Husebye D., Seraj H.S., Hill H.R. Analysis of proinflammatory and antiinflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am. J. Clin. Pathol., 2011, vol. 136, no. 5, pp. 696–704. doi: 10.1309/AJCP7UBK8IBVMVNR
  53. Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, vol. 489, no. 7415, pp. 231–241. doi: 10.1038/nature11551
  54. Mazmanian S.K., Round J.L., Kasper D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, vol. 453, no. 7195, pp. 620–625. doi: 10.1038/nature07008
  55. McFarland H.F., Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat. Immunol., 2007, vol. 8, no. 9, pp. 913– 919. doi: 10.1038/ni1507
  56. Mielcarz D.W., Kasper L.H. The gut microbiome in multiple sclerosis. Curr. Treat. Options Neurol., 2015, vol. 17, no. 4: 344. doi: 10.1007/s11940-015-0344-7
  57. Miller P.G., Bonn M.B., Franklin C.L., Ericsson A.C., McKarns S.C. TNFR2 deficiency acts in concert with gut microbiota to precipitate spontaneous sex-biased central nervous system demyelinating autoimmune disease. J. Immunol., 2015, vol. 195, no. 10, pp. 4668–4684. doi: 10.4049/jimmunol.1501664
  58. Miyake S., Kim S., Suda W., Oshima K., Nakamura M., Matsuoka T., Chihara N., Tomita A., Sato W., Kim S.W., Morita H., Hattori M., Yamamura T. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonginf to Clostridia XIVa and IV clusters. PLoS One, 2015, vol. 10, no. 9: e0137429. doi: 10.1371/journal.pone.0137429
  59. Montes M., Zhang X., Berthelot L., Laplaud D.A., Brouard S., Jin J., Rogan S., Armao D., Jewells V., Soulillou J.P., MarkovicPlese S. Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin. Immunol., 2009, vol. 130, no. 2, pp. 133–144. doi: 10.1016/j.clim.2008.08.030
  60. Mulvey M.R., Doupe M., Prout M., Leong C., Hizon R., Grossberndt A., Klowak M., Gupta A., Melanson M., Gomori A., Esfahani F., Klassen L., Frost E.E., Namaka M. Staphylococcus aureus harbouring Enterotoxin A as a possible risk factor for multiple sclerosis exacerbations. Mult. Scler., 2011, vol. 17, no. 4, pp. 397–403. doi: 10.1177/1352458510391343
  61. Nibali L., Henderson B., Sadiq S.T., Donos N. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. J. Oral Microbiol., 2014, vol. 6: 22962. doi: 10.3402/jom.v6.22962
  62. Ochoa-Reparaz J., Mielcarz D.W., Wang Y., Begum-Haque S., Dasgupta S., Kasper D.L., Kasper L.H. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucos. Immunol., 2010, vol. 3, no. 5, pp. 487–495. doi: 10.1038/mi.2010.29
  63. Paulissen S.M., van Hamburg J.P., Dankers W., Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine, 2015, vol. 74, no. 1, pp. 43–53. doi: 10.1016/j.cyto.2015.02.002
  64. Pickard J.M., Zeng M.Y., Caruso R., Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 2017, vol. 279, no. 1, pp. 70–89. doi: 10.1111/imr.12567
  65. Pisa D., Alonso R., Jiménez-Jiménez F.J., Carrasco L. Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis. Eur. J. Clin. Microbiol. Infect. Dis., 2013, vol. 32, no. 6, pp. 795–801. doi: 10.1007/s10096-012-1810-8
  66. Round J.L., Mazmanian S. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 27, pp. 12204–12209. doi: 10.1073/pnas.0909122107
  67. Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One, 2013, vol. 8, no. 10: e76359. doi: 10.1371/journal.pone.0076359
  68. Sallusto F., Zielinski C.E., Lanzavecchia A. Human Th17 subsets. Eur. J. Immunol., 2012, vol. 42, no. 9, pp. 2215–2220. doi: 10.1002/eji.201242741
  69. Saroukolaei S.A., Ghabaee M., Shokri H., Khosravi A., Badiei A. Evaluation of APR1 gene expression in Candida albicans strains isolated from patients with multiple sclerosis. Jundishapur. J. Microbiol., 2016, vol. 9, no. 5: e33292. doi: 10.5812/jjm.33292
  70. Scher J.U., Sczesnak A., Longman R.S., Segata N., Ubeda C., Bielski C., Rostron J.U., Cerundolo V., Pamer E.G., Abramson S.B., Huttenhower C., Littman D.R. Expansion of intestinal Prevotella copri correlates with enhance susceptibility to arthritis. Elife, 2013, vol. 2: e01202. doi: 10.7554/eLife.01202
  71. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G., Grangette C., Vasquez N., Pochart P., Trugnan G., Thomas G., Blottière H.M., Doré J., Marteau P., Seksik P., Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 43, pp. 16731–16736. doi: 10.1073/pnas.0804812105
  72. Tremlett H., Fadrosh D.W., Faruqi A.A., Hart J., Roalstad S., Graves J., Spencer C.M., Lynch S.V., Zamvil S.S., Waubant E.; US Network of Pediatric MS Centers. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurol., 2016, vol. 16, no. 1: 182. doi: 10.1186/s12883-016-0703-3
  73. Tzartos J.S., Friese M.A., Craner M.J., Palace J., Newcombe J., Esiri M.M., Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol., 2008, vol. 172, no. 1, pp. 146–155. doi: 10.2353/ajpath.2008.070690
  74. Varrin-Doyer M., Spencer C.M., Schulze-Topphoff U., Nelson P.A., Stroud R.M., Cree B.A., Zamvil S.S. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann. Neurol., 2012, vol. 72, no. 1, pp. 53–64. doi: 10.1002/ana.23651
  75. Wacleche V.S., Goulet J.P., Gosselin A., Monteiro P., Soudeyns H., Fromentin R., Jenabian M.A., Vartanian S., Deeks S.G., Chomont N., Routy J.P., Ancuta P. New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology, 2016, vol. 13, no. 1, pp. 59. doi: 10.1186/s12977-016-0293-6
  76. Yamashita M., Ukibe K., Matsubara Y., Hosoya T., Sakai F., Kon S., Arima Y., Murakami M., Nakagawa H., Miyazaki T. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Front. Microbiol., 2018, vol. 8: 2596. doi: 10.3389/fmicb.2017.02596
  77. Zheng Y., Valdez P.A., Danilenko D.M., Hu Y., Sa S.M., Gong Q., Abbas A.R., Modrusan Z., Ghilardi N., de Sauvage F.J., Ouyang W. Interleukin-22 mediates early host defense against attaching and effacing bacterial patho, gens. Nat. Med., 2008, vol. 14, no. 3, pp. 282–289. doi: 10.1038/nm1720
  78. Zhu E., Wang X., Zheng B., Wang Q., Hao J., Chen S., Zhao Q., Zhao L., Wu Z., Yin Z. miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORγt and STAT3. J. Immunol., 2014, vol. 192, no. 12, pp. 5599–5609. doi: 10.4049/jimmunol.1303488
  79. Zielinski C.E., Mele F., Aschenbrenner D., Jarrossay D., Ronchi F., Gattorno M., Monticelli S., Lanzavecchia A., Sallusto F. Pathogen-induced human T(H)17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature, 2012, vol. 484, no. 7395, pp. 514–518. doi: 10.1038/nature10957

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Абдурасулова И.Н., Тарасова Е.А., Кудрявцев И.В., Негореева И.Г., Ильвес А.Г., Серебрякова М.К., Ермоленко Е.И., Ивашкова Е.В., Мацулевич А.В., Татаринов А.Е., Столяров И.Д., Клименко В.М., Суворов А.Н., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах