THE STUDY OF INFLUENZA VIRUS NEURAMINIDASE HYDRATION DEGREE

Cover Page


Cite item

Full Text

Abstract

It is known that the functioning of many proteins and enzymes depends on the degree of hydration of their surfaces. In our studies, neuraminidase (NA) of influenza virus was selected as a model for surface antigenic viral protein. The Brunauer–Emmett–Teller (BET) model of adsorption was used to calculate the values of water monolayer (am) at different values of water vapor pressure. The obtained BET isotherms allow for concluding that hysteresis takes place manifested by the difference between the monolayer am values for sorption and desorption of water from the surface of the enzyme, which is probably associated with a high degree of cooperation of the hydration shell formed. The maximum binding of water molecules was observed for the vapor pressure p/ps value of 0.65 and was am = 224 water molecules per a molecule of the enzyme. Basing on the calculated surface area of a NA tetramer (S = 256 nm2 ) and the maximum projection area of water molecule, it may be concluded that the entire surface of the enzyme is completely covered with a water monolayer. For said am value the maximum activity of NA was observed, whereas the minimum enzyme activity corresponded to the am value of 98 water molecules per a molecule of the enzyme, which corresponded to the water vapor pressure p/pS value of 0.38. Thus, for the influenza virus NA protein a dependency of the enzymatic activity on the degree of hydration of the surface of the enzyme is demonstrated. The dependence of immunogenicity of influenza virus from the extent of hydration of NA.

 

About the authors

N. S. Grebenkina

I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow

Author for correspondence.
Email: kontarov@mail.ru
Junior Researcher, Laboratory of the Children’s Viral Infections Russian Federation

N. A. Kontarov

I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow

Email: kontarov@mail.ru
PhD (Biology), Leading Researcher, Laboratory of the Children’s Viral Infections Russian Federation

N. V. Yuminova

I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow

Email: kontarov@mail.ru
PhD, MD (Biology), Associate Professor, Deputy Director of Research Russian Federation

References

  1. Аксенов С.И. Вода и ее роль в регуляции биологических процессов. М.: Институт компьютерных исследований. 2004. 212 с. [Aksenov S.I. Voda i ee rol’ v regulyatsii biologicheskikh protsessov [Water and its role in the regulation of biological processes]. Moscow: Institute of Computer Science, 2004, 212 p.]
  2. Вирусология. Методы: пер. англ. Под ред. Мейхи Б.М.: Мир, 1988. 344 с. [Barrett T., Bird P., Clegg J. Virusologiya. Metody. Pod red. Meikhi B. [Virology. Methods. Ed. Meikhi B.]. Moscow: Mir, 1988, 344 p.]
  3. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. Пер. с англ., 2-е изд. М.: Мир. 1984. 306 с. [Greg S., Sing K. Adsorbtsiya, udel’naya poverkhnost’, poristost’ [Absorption, specific surface, porosity]. 2rd ed. Moscow: Mir. 1984, 306 p.]
  4. Лихтенштейн Г.И. Закономерности в энтропийных и энергетических свойствах ферментативных процессов // Биофизика. 1966. Т. 19. С. 562–575. [Likhtenshtein G.I. Regularities in the entropic and energy properties of enzymatic processes. Biofizika = Biophysics, 1966, vol. 19, pp. 562–575. (In Russ.)]
  5. Методы определения показателей качества иммунобиологических препаратов для профилактики гриппа: методические указания (МУ 3.3.2.1758-03). М.: Федеральный центр госсанэпиднадзора МЗ РФ. 2005. 44 с. [Metody opredeleniya kachestva immunobiologicheskikh preparatov dlya profilaktiki grippa: metodicheskie ukazaniya (MU 3.3.2.1758-03). [Methods for determining the quality of immunobiological preparations for the prevention of influenza: guidelines (MU 3.3.2.1758-03)]. Moscow: Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health of the Russian Federation, 2005. 44 p.]. URL: http://rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=4727 (29.09.2017)
  6. Остарман Л.А. Методы исследования белков и нуклеиновых кислот: Электрофорез и ультрацентрифугирование (практическое пособие). М.: Наука. 1981. 288 с. [Ostarman L.A. Metody issledovaniya belkov i nukleinovykh kislot: Elektroforez i ul’tratsentrifugirovanie (prakticheskoe posobie) [Research methods proteins and nucleic acids: Electrophoresis and ultracentrifuge forces (practical guide)]. Moscow: Science, 1981, 288 p.]
  7. Туроверов К.К., Кузнецова И.М. Собственная УФ-флуоресценция белков как инструмент для изучения их динамики // Цитология. 1998. Т. 40, № 8–9. С. 735–746. [Turoverov K.K., Kuznetsova I.M. Own UV-fluorescence of proteins as a tool for studying their dynamics. Tsitologiya = Cytology, 1998, vol. 40, no. 8–9, pp. 735–746. (In Russ.)]
  8. Хургин Ю.И., Росляков В.Я., Клячко-Гурвич А.Л., Бруева Т.Р. Адсорбция паров воды химотрипсинов и лизоцимом // Биохимия. 1972. № 37. С. 485–492. [Khurgin Yu.I., Roslyakov V.Ya., Klyachko-Gurvich A.L., Brueva T.R. Adsorption of water vapor of chymotrypsins and lysozyme. Biokhimiya = Biochemistry, 1972, no. 37, pp. 485–492. (In Russ.)]
  9. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature, 1979, vol. 280, pp. 558–565. doi: 10.1038/280558a0
  10. Varghese J.N., Laver W.G., Colman P.M. Structure of influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature, 1983, vol. 303, pp. 35–40.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Grebenkina N.S., Kontarov N.A., Yuminova N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies