ПОЛУЧЕНИЕ РЕКОМБИНАНТНОГО БЕЛКА TB10.4 MYCOBACTERIUM TUBERCULOSIS В КЛЕТКАХ ESCHERICHIA COLI
- Авторы: Духовлинов И.В.1, Федорова Е.А.1, Добровольская О.А.1, Богомолова Е.Г.1, Черняева Е.Н.1, Аль-Шехадат Р.И.1, Симбирцев А.С.1
-
Учреждения:
- ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
- Выпуск: Том 5, № 4 (2015)
- Страницы: 315-322
- Раздел: ОРИГИНАЛЬНЫЕ СТАТЬИ
- Дата подачи: 15.02.2016
- Дата принятия к публикации: 15.02.2016
- Дата публикации: 16.12.2015
- URL: https://iimmun.ru/iimm/article/view/348
- DOI: https://doi.org/10.15789/2220-7619-2015-4-315-322
- ID: 348
Цитировать
Полный текст
Аннотация
На сегодняшний день туберкулез является одним из самых распространенных и опасных заболеваний в мире. Туберкулез сегодня, как и в начале XX в. — основная причина смерти от инфекционных заболеваний, вызванных бактериальными агентами. По данным Всемирной Организации Здравоохранения, в 2013 г. в мире туберкулезом заболело более 9 млн человек и около 1,5 млн заболевших погибло. Возбудителем туберкулеза является бактерия Mycobacterium tuberculosis, реже — родственные ей виды Mycobacterium bovis и Mycobacterium africanum. В основном в результате заражения бактериальная инфекция поражает легкие, однако возможно развитие заболевания и в других органах и тканях. На сегодняшний день эффективная вакцинация признана наиболее перспективной стратегией борьбы с туберкулезом. Однако на данный момент единственной зарегистрированной и разрешенной к применению противотуберкулезной вакциной является вакцина БЦЖ. В мире существует много разновидностей этой вакцины; все они производные одного штамма и незначительно различаются между собой по эффективности. Сомнительная эффективность вакцинации БЦЖ и побочные эффекты заставляют научное сообщество разрабатывать новые средства профилактики туберкулеза. Можно выделить ряд направлений разработки новых противотуберкулезных вакцин, одним из которых является создание субъединичных вакцин на основе рекомбинантных белков. Достоинства субъединичных вакцин заключаются в том, что препарат, содержащий очищенный иммуногенный белок, стабилен и безопасен, его химические свойства известны, в нем отсутствуют дополнительные белки и нуклеиновые кислоты, которые могли бы вызвать нежелательные эффекты в организме. На данный момент идентифицирован ряд антигенов Mycobacterium tuberculosis, перспективных для использования в качестве компонентов новых вакцин. Так, культуральный фильтрат Mycobacterium tuberculosis содержит иммунодоминантные секретируемые антигены, из которых одним из наиболее изученных является белок TB10.4. Белок TB10.4 специфичен для микобактерий, распознается на ранней стадии туберкулезной инфекции и способствует пролиферации лимфоцитов, ответственных за продукцию IFNγ. Белок TB10.4 также обладает адъювантным действием при введении в комплексе с белками микобактерий. Учитывая эти свойства, рекомбинантный белок TB10.4 может быть использован для создания новых кандидатных вакцин против туберкулеза.
Ключевые слова
Об авторах
И. В. Духовлинов
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Автор, ответственный за переписку.
Email: dukhovlinov@gmail.com
Россия
Е. А. Федорова
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Email: fake@neicon.ru
Россия
О. А. Добровольская
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Email: fake@neicon.ru
Россия
Е. Г. Богомолова
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Email: fake@neicon.ru
Россия
Е. Н. Черняева
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Email: fake@neicon.ru
Россия
Р. И. Аль-Шехадат
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Email: fake@neicon.ru
Россия
А. С. Симбирцев
ФГУП Государственный НИИ особо чистых биопрепаратов ФМБА России, Санкт-Петербург, Россия
Email: fake@neicon.ru
Россия
Список литературы
- Поливалентные вакцины, содержащие рекомбинант ные вирусные векторы: пат. 012037 США: МПК C12N 7/01, C12N 15/34, C12N 15/31, C12N 15/861, A61K 39/04 / Хавенга М.Я.Э. (Нидерланды), Вогелс Р. (Нидерланды), Сэдофф Д. (США), Хоун Д. (США), Скейки Я.А.В. (США), Радошевич К. (Нидерланды); заявитель и патентообладатель Круселл Холланд Б.В. (Нидерланды), Эйрас Глоубал Тиби Вэксин Фаундейшн (США); патент. поверенный Медведев В.Н. (Россия). – № 200701084, заявл. 2005.11.15, опубл. 2006.05.26. [Polivalentnye vaktsiny, soderzhashchie rekombinantnye virusnye vektory [Polyvalent vaccines containing recombinant viral vectors]: pat. 012037 США: МПК C12N 7/01, C12N 15/34, C12N 15/31, C12N 15/861, A61K 39/04 / Khavenga M.Ya.E. (Netherlands), Vogels R. (Netherlands), Sedoff D. (USA), Khoun D. (USA), Skeiki Ya.A.V. (USA), Radoshevich K. (Netherlands); applicant and patentee Krusell Kholland B.V. (Netherlands), Eiras Global Tibi Vexin Foundation (USA); patent attorney Medvedev V.N. (Russia). – № 200701084, Appl. 2005.11.15, publ. 2006.05.26. (In Russ.)]
- Стукова M.A., Заболотных Н.В., Виноградова Т.И., Гергерт В.Я., Апт А.С., Капрельянц А.С., Ерохин В.В., Яблонский П.К., Киселев О.И. Профилактика туберкулеза: современные подходы к разработке противотуберкулезных вакцин // Вестник Российской академии медицинских наук. 2012. № 11. C. 45–52. [Stukova M.A., Zabolotnykh N.V., Vinogradova T.I., Gergert V.Ya., Apt A.S., Kaprel’yants A.S., Erokhin V.V., Yablonskii P.K., Kiselev O.I. Prevention of tuberculosis: current approaches to development of vaccines. Vestnik Rossiiskoi akademii meditsinskikh nauk = Herald of the Russian Academy of Medical Sciences, 2012, no. 11, pp. 45–52. (In Russ.)]
- Татьков С.И., Дейнеко Е.В., Фурман Д.П. Перспективы создания противотуберкулезных вакцин нового поколения // Вавиловский журнал генетики и селекции. 2011. Т. 15, № 1. С. 114–129. [Tat’kov S.I., Peineko E.V., Furman D.P. Prospects for designing a new generation of anti-tuberculosis vaccine. Vavilovskii zhurnal genetiki i selektsii = Vavilov Journal of Genetics and Breeding, 2011, vol. 15, no. 1, pp. 114–129. (In Russ.)]
- Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., Connor R., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver K., Osborne J., Quail M.A., Rajandream M.A., Rogers J., Rutter S., Seeger K., Skelton J., Squares R., Squares S., Sulston J.E., Taylor K., Whitehead S., Barrell B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, vol. 393, no. 6685, pp. 537–544.
- Haile M., Källenius G. Recent developments in tuberculosis vaccines. Curr. Opin. Infect. Dis., 2005, vol. 18, no. 3, pp. 211–215.
- Iem V., Somphavong S., Buisson Y., Steenkeste N., Breysse F., Chomarat M., Sylavanh P., Nanthavong P., Rajoharison A., Berland J.L., Paboriboune P. Resistance of Mycobacterium tuberculosis to antibiotics in Lao PDR: first multicentric study conducted in 3 hospitals. BMC Infect. Dis., 2013, vol. 13, no. 1, 275 p. doi: 10.1186/1471-2334-13-275
- Invitrogen. Ni-NTA purification system. User manual. Catalog nos. K950-01, K951-01, K952-01, K953-01, K954-01, R901-01, R901-10, R 901-15. Version C. 25-0496, 2006, 32 p.
- Lindenstrøm T., Agger E.M., Korsholm K.S., Darrah P.A., Aagaard C., Seder R.A., Rosenkrands I., Andersen P. Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J. Immunol., 2009, vol. 182, no. 12, pp. 8047–8055. doi: 10.4049/jimmunol.0801592
- Majumder K. Ligation-free gene synthesis by PCR: synthesis and mutagenesis at multiple loci of a chimeric gene encoding OmpA signal peptide and hirudin. Gene, 1992, vol. 110, no. 1, pp. 89–94. doi: 10.1016/0378-1119(92)90448-X
- Rodrigues L.C., Pereira S.M., Cunha S.S., Genser B., Ichihara M.Y., de Brito S.C., Hijjar M.A., Dourado I., Cruz A.A., Sant’Anna C., Bierrenbach A.L., Barreto M.L. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG-REVAC cluster-randomised trial. Lancet, 2005, vol. 366, no. 9493, pp. 1290–1295. doi: 10.1016/S0140-6736(05)67145-0
- Russell D.G., Barry C.E., Flynn J.L. Tuberculosis: what we don’t know can, and does, hurt us. Science, 2010, vol. 328, no. 5980, pp. 852–856. doi: 10.1126/science.1184784
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem., 1987, vol. 166, no. 2, pp. 368–379.
- Sharma A.K., Khuller G.K. Recombinant mycobacterial proteins future directions to improve protective efficacy. Indian J. Exp. Biol., 2001, vol. 39, no. 12, pp. 1214–1219.
- Skjøt R.L.V., Oettinger T., Rosenkrands I., Ravn P., Brock I., Jacobsen S., Andersen P. Comparative evaluation of low-molecularmass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect. Immun., 2000, vol. 68, no. 1, pp. 214–220. doi: 10.1128/IAI.68.1.214-220.2000
- WHO. BCG vaccine. WHO Wkly Epidemiol. Rec., 2004, vol. 79, no. 4, pp. 27–38.
Дополнительные файлы
