РОЛЬ ТЯЖЕСТИ ЗАБОЛЕВАНИЯ НА ОТВЕТ СИСТЕМЫ АНТИОКСИДАНТНОЙ ЗАЩИТЫ У ПАЦИЕНТОВ С COVID-19



Цитировать

Полный текст

Аннотация

Резюме

Введение. COVID-19 является серьёзным инфекционным заболеванием, оказывая разрушительное воздействие на экономику и общественное здравоохранение во всем мире. Окислительный стресс играет ключевую роль в патогенезе и прогрессировании различных вирусных инфекций. Целью настоящего исследования была оценка биомаркеров окислительного стресса у пациентов с COVID-19 различной степени тяжести и у волонтеров.

Материалы и методы. Настоящее исследование случай-контроль было проведено с участием 60 пациентов с COVID-19 (по 30 человек со средней и с тяжёлой степенью тяжести) и 30 здоровых лиц контрольной группы, поступивших в больницу «Бакияталлах» в Тегеране с марта по июль 2020 года. Биохимические методы использовались для оценки сывороточных уровней общей антиоксидантной активности (ОАС) и биомаркеров окислительного стресса, таких как супероксиддисмутаза (СОД), каталаза (КАТ), глутатионпероксидаза (ГП) и глутатионредуктаза (ГР), а также уровни глутатиона (GSH) и малонового диальдегида (МДА).

Результаты. В контрольную группу вошли 17 мужчин и 13 женщин, а в группу пациентов средней степени тяжести COVID-19 – 20 мужчин и 10 женщин, с тяжелым течением COVID-19 – 14 мужчин и 16 женщин (P=0,295). Кроме того, средний возраст у пациентов с тяжелым течением COVID-19 (46,6 ± 12,8 лет) существенно не отличался от групп контроля (43,8 ± 12 лет; P=0,683) и средней степени тяжести (45,60 ± 13,30 лет; P=0,953). Результаты показали, что активность СОД и КAT, а также уровень МДА у пациентов средней и тяжелой степени тяжести COVID-19 были выше, чем у здоровых лиц, в то время как активность ГП и ГР, а также уровни GSH и ОАС были значительно ниже. Активность СОД и ГП, а также уровень МДА у пациентов тяжелой степени тяжести COVID-19 существенно отличались от пациентов средней степени тяжести. Однако активность КAT и ГР, а также уровень ОАС у пациентов с тяжелым течением заболевания достоверно не отличались от таковых у пациентов со средней степенью тяжести.

Заключение. Окислительный стресс играет важную роль в патогенезе инфекции COVID-19, о чем свидетельствуют усиление перекисного окисления липидов, истощение GSH и изменение активности антиоксидантных ферментов. Системный окислительный стресс напрямую связан с тяжестью патогенеза COVID-19. Следовательно, вещества с антиоксидантными свойствами могут быть потенциальным выбором для лечения COVID-19.

Об авторах

М. Шохрати

Университет медицинских наук Бакияталлах, Тегеран, Иран

Email: majidshohrati@yahoo.com

кандидат наук, профессор фармакологии, кафедра клинической фармации фармацевтического факультета Медицинского университета Бакияталлах, Тегеран, Иран

Иран

М. Джафари

Университет медицинских наук Бакияталлах, Тегеран, Иран

Email: m.jafari145@gmail.com

 кандидат наук, профессор биохимии

Кафедра биохимии, медицинский факультет, Медицинский университет Бакияталлах, Тегеран, Иран

Иран

М. Садрзаде

Университет медицинских наук Бакияталлах, Тегеран, Иран

Email: masoudsadr5468@gmail.com

доктор фармакологии

Кафедра клинической фармации, фармацевтический факультет, Медицинский университет Бакияталлах, Тегеран, Иран

Иран

Х. Эбрахиминехад

Университет медицинских наук Бакияталлах, Тегеран, Иран

Email: hamidrezaebi@yahoo.com

доктор фармакологии

Кафедра клинической фармации, фармацевтический факультет, Медицинский университет Бакияталлах, Тегеран, Иран

Иран

М. Ганей

Университет медицинских наук Бакияталлах, Тегеран, Иран

Автор, ответственный за переписку.
Email: mghaneister@gmail.com

доктор медицинских наук, профессор, пульмонолог

Центр исследований химических поражений, Медицинский университет Бакияталлах, Тегеран, Иран

Иран

Список литературы

  1. Forcados GE, Muhammad A, Oladipo OO, Makama S, Meseko CA. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants. Front Cell Infect Microbiol. 2021 May 26;11:654813. doi: 10.3389/fcimb.2021.654813. PMID: 34123871; PMCID: PMC8188981.
  2. Cullen, S., Oxidative Marker Changes in COVID-19 Patients, J Res Health Sci., 2022, vol. 4, pp. 001-002. doi: 10.35248/jhmr.22.04.102
  3. Yaghoubi N, Youssefi M, Jabbari Azad F, Farzad F, Yavari Z, Zahedi Avval F. Total antioxidant capacity as a marker of severity of COVID-19 infection: Possible prognostic and therapeutic clinical application. J Med Virol. 2022 Apr;94(4):1558-1565. doi: 10.1002/jmv.27500. Epub 2021 Dec 11. PMID: 34862613; PMCID: PMC9015601.
  4. Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, Bhattacharyya S, Hati S. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J. 2020 Dec;39(6):644-656. doi: 10.1007/s10930-020-09935-8. Epub 2020 Oct 26. PMID: 33106987; PMCID: PMC7587547.
  5. Atanasovska E, Petrusevska M, Zendelovska D, Spasovska K, Stevanovikj M, Kasapinova K, Gjorgjievska K, Labachevski N. Vitamin D levels and oxidative stress markers in patients hospitalized with COVID-19. Redox Rep. 2021 Dec;26(1):184-189. doi: 10.1080/13510002.2021.1999126. PMID: 34727009; PMCID: PMC8567917.
  6. Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021 Jul;42:100897. doi: 10.1016/j.nmni.2021.100897. Epub 2021 May 17. PMID: 34026228; PMCID: PMC8127525.
  7. Heydari, J., Jafari, M., Khazaie, S., Goosheh, H., Ghanei, M., and Karbasi, A., The role of oxidative stress in severity of obstructive pulmonary complications in sputum of sulfur mustard-injured patients. Iran J Toxicol. 2017 Sep-Oct;11(5):5-11. https://www.magiran.com/p1730660
  8. Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and Oxidative Stress. Biochemistry (Mosc). 2020 Dec;85(12):1543-1553. doi: 10.1134/S0006297920120068. PMID: 33705292; PMCID: PMC7768996.
  9. Gudarzi S, Jafari M, Pirzad Jahromi G, Eshrati R, Asadollahi M, Nikdokht P. Evaluation of modulatory effects of saffron (Crocus sativus L.) aqueous extract on oxidative stress in ischemic stroke patients: a randomized clinical trial. Nutr Neurosci. 2022 Jun;25(6):1137-1146. doi: 10.1080/1028415X.2020.1840118. Epub 2020 Nov 5. PMID: 33151132.
  10. Beltrán-García J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Mulet S, Sanchis-Gomar F, Carbonell N, García-Giménez JL. Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants (Basel). 2020 Sep 29;9(10):936. doi: 10.3390/antiox9100936. PMID: 33003552; PMCID: PMC7599810.
  11. Meftahi G, Bahari Z, Jangravi Z, Iman M. A vicious circle between oxidative stress and cytokine storm in acute respiratory distress syndrome pathogenesis at COVID-19 infection. Ukr Biochem J. 2021 Jan-Feb;93(1):18-29. doi: https://doi.org/10.15407/ubj93.01.018.
  12. Badawy MA, Yasseen BA, El-Messiery RM, Abdel-Rahman EA, Elkhodiry AA, Kamel AG, El-Sayed H, Shedra AM, Hamdy R, Zidan M, Al-Raawi D, Hammad M, Elsharkawy N, El Ansary M, Al-Halfawy A, Elhadad A, Hatem A, Abouelnaga S, Dugan LL, Ali SS. Neutrophil-mediated oxidative stress and albumin structural damage predict COVID-19-associated mortality. Elife. 2021 Nov 25;10:e69417. doi: 10.7554/eLife.69417. PMID: 34821549; PMCID: PMC8641949.
  13. Jafari M, Salehi M, Shirbazou S, Abasian L, Talebi-Meymand F. Evaluation of gender-related differences in response to oxidative stress in Toxoplasma gondii positive serum. Ann Mil Health Sci Res. 2014 May;12(2): e63369. https://brieflands.com/articles/amhsr-63369.
  14. Eshrati R, Jafari M, Gudarzi S, Nazari A, Samizadeh E, Ghafourian Hesami M. Comparison of ameliorative effects of Taraxacum syriacum and N-acetylcysteine against acetaminophen-induced oxidative stress in rat liver and kidney. J Biochem. 2021 Apr 18;169(3):337-350. doi: 10.1093/jb/mvaa107. PMID: 32970799.
  15. Muhammad Y, Kani YA, Iliya S, Muhammad JB, Binji A, El-Fulaty Ahmad A, Kabir MB, Umar Bindawa K, Ahmed A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med. 2021 Feb 1;9:2050312121991246. doi: 10.1177/2050312121991246. PMID: 33614035; PMCID: PMC7871282.
  16. Khazaie S, Jafari M, Heydari J, Asgari A, Tahmasebi K, Salehi M, Abedini MS. Modulatory effects of vitamin C on biochemical and oxidative changes induced by acute exposure to diazinon in rat various tissues: Prophylactic and therapeutic roles. J Anim Physiol Anim Nutr (Berl). 2019 Sep;103(5):1619-1628. doi: 10.1111/jpn.13144. Epub 2019 Jun 19. PMID: 31218763.
  17. Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. Changes in oxidative markers in COVID-19 patients. Arch Med Res. 2021 Nov;52(8):843-849. doi: 10.1016/j.arcmed.2021.06.004. Epub 2021 Jun 7. PMID: 34154831; PMCID: PMC8180845.
  18. Mousavi SR, Jafari M, Rezaei S, Agha-Alinejad H, Sobhani V. Evaluation of the effects of different intensities of forced running wheel exercise on oxidative stress biomarkers in muscle, liver and serum of untrained rats. Lab Anim (NY). 2020 Apr;49(4):119-125. doi: 10.1038/s41684-020-0503-7. Epub 2020 Mar 23. PMID: 32203319.
  19. Martín-Fernández M, Aller R, Heredia-Rodríguez M, Gómez-Sánchez E, Martínez-Paz P, Gonzalo-Benito H, Sánchez-de Prada L, Gorgojo Ó, Carnicero-Frutos I, Tamayo E, Tamayo-Velasco Á. Lipid peroxidation as a hallmark of severity in COVID-19 patients. Redox Biol. 2021 Nov 6;48:102181. doi: 10.1016/j.redox.2021.102181. Epub ahead of print. PMID: 34768063; PMCID: PMC8572041.
  20. Strycharz-Dudziak M, Kiełczykowska M, Drop B, Świątek Ł, Kliszczewska E, Musik I, Polz-Dacewicz M. Total Antioxidant Status (TAS), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) in Oropharyngeal Cancer Associated with EBV Infection. Oxid Med Cell Longev. 2019 Jul 8;2019:5832410. doi: 10.1155/2019/5832410. PMID: 31360295; PMCID: PMC6644273.
  21. Golabi S, Ghasemi S, Adelipour M, Bagheri R, Suzuki K, Wong A, Seyedtabib M, Naghashpour M. Oxidative Stress and Inflammatory Status in COVID-19 Outpatients: A Health Center-Based Analytical Cross-Sectional Study. Antioxidants (Basel). 2022 Mar 22;11(4):606. doi: 10.3390/antiox11040606. PMID: 35453291; PMCID: PMC9024445.
  22. Naghashpour M, Ghiassian H, Mobarak S, Adelipour M, Piri M, Seyedtabib M, Golabi S. Profiling serum levels of glutathione reductase and interleukin-10 in positive and negative-PCR COVID-19 outpatients: A comparative study from southwestern Iran. J Med Virol. 2022 Apr;94(4):1457-1464. doi: 10.1002/jmv.27464. Epub 2021 Nov 27. PMID: 34800305; PMCID: PMC9011590.
  23. Qin M, Cao Z, Wen J, Yu Q, Liu C, Wang F, Zhang J, Yang F, Li Y, Fishbein G, Yan S, Xu B, Hou Y, Ning Z, Nie K, Jiang N, Liu Z, Wu J, Yu Y, Li H, Zheng H, Li J, Jin W, Pang S, Wang S, Chen J, Gan Z, He Z, Lu Y. An Antioxidant Enzyme Therapeutic for COVID-19. Adv Mater. 2020 Oct;32(43):e2004901. doi: 10.1002/adma.202004901. Epub 2020 Sep 13. PMID: 32924219.
  24. Poe FL, Corn J. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2. Med Hypotheses. 2020 Oct;143:109862. doi: 10.1016/j.mehy.2020.109862. Epub 2020 May 30. PMID: 32504923; PMCID: PMC7261085.
  25. Polonikov A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect Dis. 2020 Jul 10;6(7):1558-1562. doi: 10.1021/acsinfecdis.0c00288. Epub 2020 May 28. PMID: 32463221.
  26. Liao QJ, Ye LB, Timani KA, Zeng YC, She YL, Ye L, Wu ZH. Activation of NF-kappaB by the full-length nucleocapsid protein of the SARS coronavirus. Acta Biochim Biophys Sin (Shanghai). 2005 Sep;37(9):607-12. doi: 10.1111/j.1745-7270.2005.00082.x. PMID: 16143815; PMCID: PMC7109668.
  27. Guloyan V, Oganesian B, Baghdasaryan N, Yeh C, Singh M, Guilford F, Ting YS, Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants (Basel). 2020 Sep 25;9(10):914. doi: 10.3390/antiox9100914. PMID: 32992775; PMCID: PMC7601802.
  28. Jaiswal N, Bhatnagar M, Shah H. N-acetycysteine: A potential therapeutic agent in COVID-19 infection. Med Hypotheses. 2020 Nov;144:110133. doi: 10.1016/j.mehy.2020.110133. Epub 2020 Jul 24. PMID: 32758904; PMCID: PMC7380211.
  29. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X. Epub 2020 Feb 18. Erratum in: Lancet Respir Med. 2020 Apr;8(4):e26. doi: 10.1016/S2213-2600(20)30085-0. PMID: 32085846; PMCID: PMC7164771.
  30. Khan S, Faisal S, Usman H, Zainab R, Taj F, Amrani R, Tayyeb M. COVID-19: a brief overview on the role of vitamins specifically vitamin C as immune modulators and in prevention and treatment of SARS-Cov-2 infections. Biomed J Sci Tech Res. 2020 June; 28(3):21580-21586. doi: 10.26717/BJSTR.2020.28.004648
  31. Handu D, Moloney L, Rozga M, Cheng FW. Malnutrition Care During the COVID-19 Pandemic: Considerations for Registered Dietitian Nutritionists. J Acad Nutr Diet. 2021 May;121(5):979-987. doi: 10.1016/j.jand.2020.05.012. Epub 2020 May 14. PMID: 32411575; PMCID: PMC7221397.
  32. Chiscano-Camón L, Ruiz-Rodriguez JC, Ruiz-Sanmartin A, Roca O, Ferrer R. Vitamin C levels in patients with SARS-CoV-2-associated acute respiratory distress syndrome. Crit Care. 2020 Aug 26;24(1):522. doi: 10.1186/s13054-020-03249-y. PMID: 32847620; PMCID: PMC7447967.
  33. Shakoor H, Feehan J, Al Dhaheri AS, Ali HI, Platat C, Ismail LC, Apostolopoulos V, Stojanovska L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021 Jan;143:1-9. doi: 10.1016/j.maturitas.2020.08.003. Epub 2020 Aug 9. PMID: 33308613; PMCID: PMC7415215.
  34. Zhang Y, Xu C, Agudelo Higuita NI, Bhattacharya R, Chakrabarty JH, Mukherjee P. Evaluation of I-TAC as a potential early plasma marker to differentiate between critical and non-critical COVID-19. Cell Stress. 2021 Dec 21;6(1):6-16. doi: 10.15698/cst2022.01.262. PMID: 35083423; PMCID: PMC8728569.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Shohrati M., Jafari M., Sadrzadeh M., Ebrahiminezhad H., Ghanei M.,

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах