REGULATORY INFLUENCE OF BLOOD MONOCYTES ON THE POPULATION COMPOSITION OF GRANULOCYTES AND THE STATE OF THEIR RESPIRATORY BURST IN THE WIDESPREAD PURULENT PERITONITIS

Cover Page


Cite item

Full Text

Abstract

The aim of the study was to investigate the regulatory effect of monocytes and their subpopulations on the population composition  of granulocyte leukocytes and the state of their respiratory burst in  widespread purulent peritonitis (WPP). The study involved 24  patients aged 30-65 with acute surgical diseases and injuries of  abdominal organs complicated by WPP. As a control 25 relatively  healthy people of the same age range were examined. A study of the population composition of monocytes and granulocyte leukocytes in  blood was performed using a two-platform technology on the  hematological analyzer Sysmex XE-5000 (Sysmex Inc., USA) and  FC-500 flow cytometer (Beckman Coulter, USA) using the Cytodiff antibody kit (Beckman Coulter, USA). A study of the  monocytes number expressing HLA-DR- and CD64-receptor was performed by flow cytometry using direct immunofluorescence  of whole peripheral blood. The respiratory burst state of neutrophilic granulocytes was studied by chemiluminescence analysis on a 36-channel chemiluminescence analyzer BLM-3607 (MedBioTech, Russia). As indicators of chemiluminescence  were used luminol and lucigenin. The enhancement of  chemiluminescence induced by zymosan was evaluated by the ratio  of the area of the induced chemiluminescence to the spontaneous area and was defined as the activation index. It has  been established that the immune-inflammatory process in WPP is  characterized by a decrease in the number of classical monocytes in  the peripheral blood and an increase in the content of non-classical  monocytes. In WPP in peripheral blood the level of monocytes  expressing HLA-DR receptors decreases. The change in the ratio of  monocytes subpopulations characterizes the increase in the role of  the proinflammatory fraction in the WPP pathogenesis. Changes in  the population composition of granulocytes in the blood in patients  with WPP also characterize the development of an acute  inflammatory process. In this case, there is a decrease in the  number of basophils in the peripheral blood, which, apparently, is  determined by the presence of an allergic component in WPP and,  accordingly, their migration to the inflammation area. In patients  with WPP activation of a respiratory burst of granulocytes of blood  was detected, the intensity of which is determined by the synthesis  of primary and secondary active oxygen species. The results of the  correlation analysis made it possible to establish that in WPP the  regulatory role of non-classical monocytes increases aimed at  stimulating the inflammatory processes (an increase in the number  of mature and immature forms of neutrophils and stimulation of the activity of a respiratory explosion of granulocytes). The revealed features of the regulatory effect of monocytes on the population  composition and the intensity of the respiratory burst of granulocytes can be used in the development of immunotherapeutic methods aimed at reducing the activity of the inflammatory process in WPP.

About the authors

A. A. Savchenko

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of Laboratory of  Molecular Cell Physiology and Pathology, Scientific Research  Institute of Medical Problems of the  North, Krasnoyarsk, Russian Federation; Head of the  Department of Physiology, Krasnoyarsk State Medical  University named after Prof. V.F. Voino- Yasenetsky, Krasnoyarsk, Russian Federation

Russian Federation

A. G. Borisov

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD (Medicine), Leading Researcher, Laboratory of  Molecular Cell Physiology and Pathology, Scientific Research Institute of Medical Problems of the North,  Krasnoyarsk, Russian Federation; Associate Professor,  Department of Infectious Diseases, Krasnoyarsk State  Medical University named after Prof. V.F. Voino- Yasenetsky, Krasnoyarsk, Russian Federation

Russian Federation

D. V. Cherdancev

Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Department and  Clinic Surgical Diseases named after prof. A.M. Dychno with the course of endoscopy and endosurgery, Krasnoyarsk State  Medical University named after Prof. V.F. Voino- Yasenetsky, Krasnoyarsk, Russian Federation

Russian Federation

O. V. Pervova

Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD, MD (Medicine), Professor of the Department and Clinic  Surgical Diseases named after prof. A.M. Dychno with the  course of endoscopy and endosurgery, Krasnoyarsk State Medical University named after Prof. V.F. Voino- Yasenetsky, Krasnoyarsk, Russian Federation

Russian Federation

I. V. Kudryavcev

Research Institute of Experimental Medicine

Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: igorek1981@yandex.ru

PhD (Biology), Senior Researcher, Laboratory of  Immunology, Institute of Experimental Medicine, St.  Petersburg, Russian Federation; Associate Professor,  Department of Immunology, Pavlov First St. Petersburg State Medical  University, St. Petersburg, Russian Federation

Russian Federation

V. D. Belenyuk

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: fake@neicon.ru

Junior Researcher, Laboratory of Molecular Cell Physiology and  Pathology, Scientific Research Institute of Medical Problems of the North, Krasnoyarsk, Russian Federation

Russian Federation

References

  1. Головкин А.С., Матвеева В.Г., Кудрявцев И.В., Григорьев Е.В., Великанова Е.А., Байракова Ю.В. Субпопуляции моноцитов крови при неосложненном течении периоперационного периода коронарного шунтирования // Медицинская иммунология. 2012. Т. 14, № 4–5. С. 305–312. [Golovkin A.S., Matveeva V.G., Kudryavtsev I.V., Grigoriev E.V., Velikanova E.A., Bairakova Y.V. Blood monocyte subpopulations during uncomplicated coronary artery bypass surgery. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, vol. 14, no. 4–5, pp. 305–312. doi: 10.15789/1563-0625-2012-4-5-305-312 (In Russ.)]
  2. Евстратова В.С., Ригер Н.А., Никитюк Д.Б., Ханферьян Р.А. Особенности секреции хемокинов мононуклеарными и дендритными клетками: роль гистаминовых рецепторов H3/H4-типа // Медицинская иммунология. 2016. Т. 18, № 5. С. 437–442. [Evstratova V.S., Riger N.A., Nikityuk D.B., Khanferyan R.A. Chemokine secretion patterns in mononuclear and dendritic cells: role of histamine type h3/h4 receptors. Meditsinskaya immunologiya = Medical Immunology (Russia), 2016, vol. 18, no. 5, pp. 437–442. doi: 10.15789/1563-0625-2016-5-437-442 (In Russ.)]
  3. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуоримерического анализа // Медицинская иммунология. 2015. Т. 17, № 1. С. 19–26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 1, pp. 19–26. doi: 10.15789/1563-0625-2015-1-19-26 (In Russ.)]
  4. Савченко А.А., Борисов А.Г., Анисимова Е.Н., Беленюк В.Д., Кудрявцев И.В., Решетников И.В., Квятковская С.В., Цейликман В.Э., Зорин А.Н. Исследование фенотипа лейкоцитов крови у больных онихомикозами с помощью метода Hematoflow // Инфекция и иммунитет. 2015. Т. 5, № 4. С. 339–348. [Savchenko A.A., Borisov A.G., Anisimova E.N., Belenyuk V.D., Kudryavtsev I.V., Reshetnikov I.V., Kvjatkovskaja S.V., Cejlikman V.J., Zorin A.N. Blood leukocytes phenotyping by hematoflow method in patients with onychomycosis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2015, vol. 5, no. 4, pp. 339–348. doi: 10.15789/2220-7619-2015-4-339-348 (In Russ.)]
  5. Савченко А.А., Борисов А.Г., Здзитовецкий Д.Э., Гвоздев И.И. Особенности цитокиновой регуляции респираторного взрыва нейтрофилов крови в прогнозе развития абдоминального сепсиса у больных распространенным гнойным перитонитом // Медицинская иммунология. 2016. Т. 18, № 5. С. 475–482. [Savchenko A.A., Borisov A.G., Zdzitovetsky D.E., Gvozdev I.I. Cytokine regulation of respiratory burst in blood neutrophils for prediction of abdominal sepsis in patients with extended purulent peritonitis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2016, vol. 18, no. 5, pp. 475–482. doi: 10.15789/1563-0625-2016-5-475-482 (In Russ.)]
  6. Савченко А.А., Борисов А.Г., Модестов А.А., Мошев А.В., Кудрявцев И.В., Тоначева О.Г., Кощеев В.Н. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечноклеточным раком // Медицинская иммунология. 2015. Т. 17, № 2. С. 141–150. [Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 2, pp. 141–150. doi: 10.15789/1563-0625-2015-2-141-150 (In Russ.)]
  7. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г., Лузан Н.А. Хемилюминесцентная активность нейтрофильных гранулоцитов и уровни концентрации цитокинов у больных распространенным гнойным перитонитом // Цитокины и воспаление. 2013. Т. 12, № 1–2. С. 115–119. [Savchenko A.A., Zdzitovetskiy D.E., Borisov A.G., Luzan N.A. Neutrophil chemiluminescent activity and cytokine concentration levels in patients with extensive purulent peritonitis. Tsitokiny i vospalenie = Cytokines and Inflammation, 2013, vol. 12, no. 1–2, pp. 115–119. (In Russ.)]
  8. Agrawal A., Agrawal S., Gupta S. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front. Immunol., 2017, vol. 8: 896. doi: 10.1155/2015/794072
  9. Allen R.C. Neutrophil leukocyte: combustive microbicidal action and chemiluminescence. J. Immunol. Res., 2015, vol. 2015: 794072, 11 p. doi: 10.1155/2015/794072
  10. Baek K., Chung I. Cadmium exposure is associated with monocyte count and monocyte to HDL ratio, a marker of inflammation and future cardiovascular disease in the male population. J. Korean Med. Sci., 2017, vol. 32, no. 9, pp. 1415–1422. doi: 10.3346/jkms.2017.32.9.1415
  11. Cortjens B., Lutter R., Boon L., Bem R.A., van Woensel J.B. Pneumovirus-induced lung disease in mice is independent of neutrophil-driven inflammation. PLoS ONE, 2016, vol. 11, no. 12: e0168779. doi: 10.1371/journal.pone.0168779
  12. Cox S.N., Serino G., Sallustio F., Blasi A., Rossini M., Pesce F., Schena F.P. Altered monocyte expression and expansion of nonclassical monocyte subset in IgA nephropathy patients. Nephrol. Dial. Transplant., 2015, vol. 30, iss. 7, pp. 1122–1232. doi: 10.1093/ndt/gfv017
  13. El-Benna J., Hurtado-Nedelec M., Marzaioli V., Marie J.C., Gougerot-Pocidalo M.A., Dang P.M. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol. Rev., 2016, vol. 273, iss. 1, pp. 180–193. doi: 10.1111/imr.12447
  14. Fine N., Dimitriou I.D., Rullo J., Sandí M.J., Petri B., Haitsma J., Ibrahim H., La Rose J., Glogauer M., Kubes P., Cybulsky M., Rottapel R. GEF-H1 is necessary for neutrophil shear stress-induced migration during inflammation. J. Cell Biol., 2016, vol. 215, no. 1, pp. 107–119. doi: 10.1083/jcb.201603109
  15. Gilmore J.F., Kim M., LaSalvia M.T., Mahoney M.V. Treatment of enterococcal peritonitis with intraperitoneal daptomycin in a vancomycin-allergic patient and a review of the literature. Perit. Dial. Int., 2013, vol. 33, no. 4, pp. 353–357. doi: 10.3747/pdi.2012.00277
  16. Gordon S. Targeting a monocyte subset to reduce inflammation. Circ. Res., 2012, iss. 110, no. 12, pp. 1546–1548. doi: 10.1161/RES.0b013e31825ec26d
  17. Ichibangase T., Ohba Y., Kishikawa N., Nakashima K., Kuroda N. Evaluation of lophine derivatives as L-012 (luminol analog)-dependent chemiluminescence enhancers for measuring horseradish peroxidase and H2O2. Luminescence, 2014, vol. 29, iss. 2, pp. 118– 121. doi: 10.1002/bio.2513
  18. Jha J.C., Watson A.M.D., Mathew G., de Vos L.C., Jandeleit-Dahm K. The emerging role of NADPH oxidase NOX5 in vascular disease. Clin. Sci., 2017, vol. 131, no. 10, pp. 981–990. doi: 10.1042/CS20160846
  19. Kahng J., Kim Y., Kim M., Oh E.J., Park Y.J., Han K. Flow cytometric white blood cell differential using CytoDiff is excellent for counting blasts. Ann. Lab. Med., 2015, vol. 35, no. 1, pp. 28–34. doi: 10.3343/alm.2015.35.1.28
  20. Laborde R.R., Lin Y., Gustafson M.P., Bulur P.A., Dietz A.B. Cancer vaccines in the world of immune suppressive monocytes (CD14+HLA-DRlo/neg cells): the gateway to improved responses Front. Immunol., 2014, vol. 5, pp. 147. doi: 10.3389/fimmu.2014.00147
  21. Lan F., Yuan B., Liu T., Luo X., Huang P., Liu Y., Dai L., Yin H. Interleukin-33 facilitates neutrophil recruitment and bacterial clearance in S. aureus-caused peritonitis. Mol. Immunol., 2016, vol. 72, pp. 74–80. doi: 10.1016/j.molimm.2016.03.004
  22. Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, vol. 12, pp. 191–200. doi: 10.1038/nri3158
  23. Mao Y., Koga J.I., Tokutome M., Matoba T., Ikeda G., Nakano K., Egashira K. Nanoparticle-mediated delivery of pitavastatin to monocytes/macrophages inhibits left ventricular remodeling after acute myocardial infarction by inhibiting monocyte-mediated Inflammation. Int. Heart J., 2017, vol. 58, iss. 4, pp. 615–623. doi: 10.1536/ihj.16-457
  24. Oishi Y., Manabe I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis., 2016, vol. 2: 16018. doi: 10.1038/npjamd.2016.18
  25. Schwartz C., Eberle J.U., Voehringer D. Basophils in inflammation. Eur. J. Pharmacol., 2016, vol. 778, pp. 90–95. doi: 10.1016/j.ejphar.2015.04.049
  26. Singal R., Dhar S., Zaman M., Singh B., Singh V., Sethi S. Comparative evaluation of intra-operative peritoneal lavage with super oxidized solution and normal saline in peritonitis cases; randomized controlled trial. Maedica, 2016, vol. 11, no. 4, pp. 277–285.
  27. Singh T.P., Zhang H.H., Borek I., Wolf P., Hedrick M.N., Singh S.P., Kelsall B.L., Clausen B.E., Farber J.M. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat. Commun., 2016, vol. 7:13581. doi: 10.1038/ncomms13581
  28. Tan S.Y., Weninger W. Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Curr. Opin. Immunol., 2017, vol. 44, pp. 34–42. doi: 10.1016/j.coi.2016.11.002
  29. Van Biesen W., Brown E.A. Diagnostic and therapeutic approach to peritonitis. Nephrol. Dial. Transplant., 2017, vol. 32, iss. 8, pp. 1283–1284. doi: 10.1093/ndt/gfx226
  30. Wang H., Hartnett M.E. Roles of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in angiogenesis: isoformspecific effects. Antioxidants, 2017, vol. 6, no. 2: 40. doi: 10.3390/antiox6020040
  31. Watzlawick R., Kenngott E.E., Liu F.D., Schwab J.M., Hamann A. Anti-inflammatory effects of IL-27 in zymosan-induced peritonitis: inhibition of neutrophil recruitment partially explained by impaired mobilization from bone marrow and reduced chemokine levels. PLoS ONE, 2015, vol. 10, no. 9: 0137651. doi: 10.1371/journal.pone.0137651
  32. Winkler M.S., Rissiek A., Priefler M., Schwedhelm E., Robbe L., Bauer A., Zahrte C., Zoellner C., Kluge S., Nierhaus A. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFα response: a diagnostic tool for immunosuppression? PLoS ONE, 2017, vol. 12, no. 8: e0182427. doi: 10.1371/journal.pone.0182427
  33. Yamanishi Y., Karasuyama H. Basophils and mast cells in immunity and inflammation. Semin. Immunopathol., 2016, vol. 38, iss. 5, pp. 535–537. doi: 10.1007/s00281-016-0582-0
  34. Ziegler-Heitbrock L. Monocyte subsets in man and other species. Cell. Immunol., 2014, vol. 289, iss. 1–2, pp. 135–139. doi: 10.1016/j.cellimm.2014.03.019

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Savchenko A.A., Borisov A.G., Cherdancev D.V., Pervova O.V., Kudryavcev I.V., Belenyuk V.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies