An interaction of Zika virus envelope fragments with serum antibodies derived from subjects after flavivirus infections
- Authors: Shanshin D.V.1,2, Bakulina A.Y.1,3, Kazachinskaia E.I.1, Pyankov S.A.1, Ilyichev A.A.1, Scherbakov D.N.1,2
-
Affiliations:
- State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor
- Altai State University
- Novosibirsk State University
- Issue: Vol 10, No 1 (2020)
- Pages: 73-82
- Section: ORIGINAL ARTICLES
- Submitted: 26.11.2018
- Accepted: 26.11.2019
- Published: 04.04.2020
- URL: https://iimmun.ru/iimm/article/view/805
- DOI: https://doi.org/10.15789/2220-7619-AIO-805
- ID: 805
Cite item
Full Text
Abstract
The causative agent of Zika fever (ZIKV) belongs to the genus Flavivirus of the family Flaviviridae. The flavivirus genus consists of more than 70 members. Based on virion structural organization and amino acid composition of proteins, this virus resembles other flaviviruses such as dengue (DENV), yellow fever and West Nile (WNV) posing a threat to human health. ZIKV is an arbovirus and may be transmitted by diverse mosquito species of the genus Aedes. It is believed that the main carriers are also able to transmit dengue virus, yellow fever virus as well as other flavivirus infections. In 1947, ZIKV was isolated for the first time from blood samples obtained from rhesus macaques inhabiting the Zika Forest (Uganda). Long time this virus was not considered as a dangerous to human pathogen, as Zika fever mostly occurs asymptomatically. However, analysis of Zika fever course in pregnant women unveiled a link between this disease and severe congenital disorders of the nervous system, including microcephaly, that allowed to deal with it as a dangerous infection thereafter. Rapid ZIKV spread outlined a number of problems faced by medical doctors, among which the main issue was the lack of assays for its virus-specific diagnostics. ZIKV displays a marked antigenic similarity with other flaviviruses. The majority of dengue-specific monoclonal antibodies binds to Zika virus. It is expected given the high degree of amino acid sequence similarity found for flavivirus polyprotein. Several antigens bearing ZIKV E surface protein fragments were constructed to assess an opportunity for conducting differential diagnostics for distinct flaviviruses based on detection of virus-specific antibodies. Vector plasmid pET32 was selected for producing recombinant antigens in E. coli cells. After creating constructs encoding the ZEa187 and ZEa40 proteins, the chimeric proteins were produced in amount necessary for performing ELISA with blood serum samples. Protein samples were prepared by isolating them from bacterial biomass via lysis followed by chromatographic purification. Blood sera obtained from human subjects recovered after Zika, Dengue and West Nile fevers were used to examined immunochemical properties of chimeric proteins. Human sera containing no antibodies against flavivirus types were used as a negative control. It was found that serum IgM class antibodies derived from patients with flavivirus infections demonstrated a high level of cross-reactivity by interacting with ZEa187 and ZEa40. Upon that, despite increment of mean specific interaction signal observed for such proteins and IgG of ZIKV sera, a marked cross-reactivity with the IgG of WNV and DENV sera was found. Thus, with some certainty it may be concluded that in immunochemical assays use of natural amino acid sequence specific to Zika virus surface protein as antigenic material does not allow to achieve high specificity for antibody detection.
About the authors
D. V. Shanshin
State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor; Altai State University
Author for correspondence.
Email: shanshindv@vector.nsc.ru
ORCID iD: 0000-0003-3682-2287
Daniil V. Shanshin - Junior Researcher, SRCVB «Vector» Rospotrednadzor; Junior Researcher, Russian-American Anti-Cancer Center, ASU.
630559, Novosibirsk Region, Koltsovo, Phone: +7 903 939-74-79 (mobile)
РоссияA. Yu. Bakulina
State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor; Novosibirsk State University
Email: bakulina@gmail.com
PhD (Biology), Senior Researcher, SRCVB «Vector» Rospotrednadzor; Head of the Laboratory, Faculty of Natural Sciences, NSU.
Koltsovo, Novosibirsk Region; Novosibirsk
РоссияE. I. Kazachinskaia
State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor
Email: alenakaz@vector.nsc.ru
PhD, MD (Biology), Leading Researcher, Hybridoma Sector Manager, SRCVB «Vector» Rospotrednadzor.
Koltsovo, Novosibirsk Region
РоссияS. A. Pyankov
State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor
Email: pyankov_sa@vector.nsc.ru
Head of the Laboratory for the Production of Immunodiagnostics, SRCVB «Vector» Rospotrednadzor.
Koltsovo, Novosibirsk Region
РоссияA. A. Ilyichev
State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor
Email: ilyichev@vector.nsc.ru
PhD, MD (Biology), Professor, Head of Bioengineering Department, SRCVB «Vector» Rospotrednadzor.
Koltsovo, Novosibirsk Region
РоссияD. N. Scherbakov
State Research Center of Virology and Biotechnology «Vector» Rospotrednadzor; Altai State University
Email: dnshcherbakov@gmail.com
PhD (Biology), Head of Immunochemistry Laboratory, SRCVB «Vector» Rospotrednadzor; Leading Researcher, Russian-American Anti-Cancer Center, ASU.
Koltsovo, Novosibirsk Region; Barnaul
РоссияReferences
- Иванов, Д. О., Малиновская, В. В., Тимченко, В. Н., Каплина, Т. А., Хакизимана, Ж. К. Глобальные и педиатрические аспекты лихорадки Зика //Педиатр. – 2016. – Т. 7. – №. 1. – С. 129-134.
- Калинина Е. И., Куличенко Т. В. Лихорадка Зика: основные факты об инфекции //Вопросы современной педиатрии. – 2016. – Т. 15. – №. 3. – С. 257-262.
- Локтев В.Б. Флавивирусы, генетическое разнообразие и распространение в современном мире // ББК 48.2 + 48.731 я431 Д 44 – 2016. – С. 84
- Малхазова С. М., Миронова В. А. Проблема новых и возвращающихся инфекции: задачи медико-географического изучения //Вестник Воронежского государственного университета. Серия: География. Геоэкология. – 2017. – №. 1. – С. 21-31.
- Маниатис Т, Фрич Э, Сэмбрук Дж. / Методы генетической инженерии. Молекулярное клонирование. Москва. Мир. 1984. с. 240-241
- Мастицкий С. Э., Шитиков В. К. Статистический анализ и визуализация данных с помощью R. - Москва.: ДМК Пресс, 2015. - 496 с.
- Покровский В.И., Малеев В.В., Краснова С.В., Сметанина С.В., Вдовина Е.Т., Котив С.И., Карань Л.С., Федорова М.В., Григорьева Я.Е., Валдохина А.В., Карганова Г.Г., Шипулин Г.А. Первый случай лихорадки Зика в России //Инфекционные болезни. – 2016. – Т. 14. – №. 1. – С. 90-95.
- Попова А. Ю., Ежлова Е. Б., Демина Ю. В., Топорков А. В., Викторов Д. В., Смелянский В. П., Жуков К.В., Бородай Н.В., Шпак И.М., Куличенко А.Н., Михеев В.Н., Малеев В.В., Шипулин Г.А. Лихорадка Зика: состояние проблемы на современном этапе //Проблемы особо опасных инфекций. – 2016. – №. 1. – С. 5-12.
- Рябинина Л.А., Кнышова Л.П. Лихорадка Зика-глобальная угроза здоровью нации // Актуальные проблемы гуманитарных и естественных наук. – 2016. - №. 4-5
- Хасанова Г. М., Исхаков Э. Р., Хасанова А. Н. Аналитический обзор распространения заболевания, вызываемого вирусом Зика //Международный академический вестник. – 2016. – №. 4. – С. 29-31.
- Шестакова И. В. Болезнь, вызванная вирусом зика: новый взгляд на известную болезнь //Журнал инфектологии. – 2016. – Т. 8. – №. 1. – С. 5-18.
- Calvet G., Aguiar R. S., Melo A. S., Sampaio S. A., De Filippis I., Fabri A., Araujo E. S. M., de Sequeira P. C., de Mendonça M. C. L., Oliveira L., Tschoeke D. A., Schrago C. G., Thompson F. L., Brasil P., dos Santos F. B., Nogueira R. M. R., Tanuri A., de Filippis A. M. B. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study //The Lancet infectious diseases. – 2016. – Т. 16. – №. 6. – С. 653-660.
- Campos J. L. S., Poggianella M., Marchese S., Mossenta M., Rana J., Arnoldi F., Bestagno M., Burrone, O. R. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection //PloS one. – 2017. – Т. 12. – №. 7. – С. e0181734.
- Chambers T. J., Hahn C. S., Galler R., Rice C. M. Flavivirus genome organization, expression, and replication //Annual Reviews in Microbiology. – 1990. – Т. 44. – №. 1. – С. 649-688.
- Chaudhury S., Gromowski G. D., Ripoll D. R., Khavrutskii I. V., Desai V., Wallqvist, A. Dengue virus antibody database: Systematically linking serotype-specificity with epitope mapping in dengue virus //PLoS neglected tropical diseases. – 2017. – Т. 11. – №. 2. – С. e0005395.
- Faye O., Freire C. C., Iamarino A., Faye O., de Oliveira J. V. C., Diallo M., Zanotto P. M. Molecular evolution of Zika virus during its emergence in the 20th century //PLoS neglected tropical diseases. – 2014. – Т. 8. – №. 1. – С. e2636.
- Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT //Nucleic acids symposium series. – [London]: Information Retrieval Ltd., c1979-c2000., 1999. – Т. 41. – №. 41. – С. 95-98
- Houghton-Triviño N., Montaña D., Castellanos J. Dengue-yellow fever sera cross-reactivity; challenges for diagnosis //Revista de salud publica. – 2008. – Т. 10. – №. 2. – С. 299-307.
- Kam Y. W., Lee C. Y. P., Teo T. H., Howland S. W., Amrun S. N., Lum F. M., See P., Kng N.Q.R., Huber R.G., Xu M.H., Tan H.L., Choo A., Maurer-Stroh S., Ginhoux F., Fink K., Wang C.I., Ng L. F.P., Rénia L. Cross-reactive dengue human monoclonal antibody prevents severe pathologies and death from Zika virus infections //JCI insight. – 2017. – Т. 2. – №. 8.
- Koenig K.L. Quarantine for Zika Virus? Where is the Science? // Disaster medicine and public health preparedness. – 2016. – T. 10 - №. 5. C. 704-706.
- Kostyuchenko V. A., Lim E. X. Y., Zhang S., Fibriansah G., Ng T. S., Ooi J. S.G., Shi J., Lok, S. M.Structure of the thermally stable Zika virus //Nature. – 2016. – Т. 533. – №. 7603. – С. 425.
- Kuhn R. J., Zhang W., Rossmann M. G., Pletnev S. V., Corver J., Lenches E., Jones C. T., Mukhopadhyay R., Chipman S. P., Strauss E. G., Baker T. S., Strauss J. H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion //Cell. – 2002. – Т. 108. – №. 5. – С. 717-725
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. / Nature. 1970. V. 227. No. 5259. P. 680-685
- Li L., Lok S. M., Yu I. M., Zhang Y., Kuhn R. J., Chen J., Rossmann M. G. The flavivirus precursor membrane-envelope protein complex: structure and maturation //Science. – 2008. – Т. 319. – №. 5871. – С. 1830-1834
- Mossenta M. Marchese S., Poggianella M., Campos J. S., Burrone O. R. Role of N-glycosylation on Zika virus E protein secretion, viral assembly and infectivity //Biochemical and biophysical research communications. – 2017.
- Priyamvada L., Quicke K. M., Hudson W. H., Onlamoon N., Sewatanon J., Edupuganti S., Pattanapanyasat K., Chokephaibulkit K., Mulligan M. J., Wilson P. C., Ahmed R., Suthar M. S., Wrammert J. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus //Proceedings of the National Academy of Sciences. – 2016. – Т. 113. – №. 28. – С. 7852-7857.
- Rai R., Dubey S., Santosh K. V., Biswas, A., Mehrotra, V., Rao D. N. Design and synthesis of multiple antigenic peptides and their application for dengue diagnosis // Biologicals. – 2017. – T. 49. – C. 81-85.
- Roth, A., Mercier, A., Lepers, C., Hoy, D., Duituturaga, S., Benyon, E., Guillaumot L., Souares, Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections–an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014 //Eurosurveillance. – 2014. – Т. 19. – №. 41. – С. 20929.
- Ventura C. V. Maia M., Bravo-Filho V., Góis A. L., Belfort R. Zika virus in Brazil and macular atrophy in a child with microcephaly //The Lancet. – 2016. – Т. 387. – №. 10015. – С. 228.
- Weber D. S., Alroy K. A., Scheiner S. M. Phylogenetic Insight into Zika and Emerging Viruses for a Perspective on Potential Hosts //EcoHealth. – 2017. – Т. 14. – №. 2. – С. 214-218.
- Wong S. H. Cloning of flavin reductase into pET32a (+) expression vector lacking the thioredoxin A tag to study solubility of EDTA monooxygenase A in overexpression systems //J. Exp. Microbiol. Immunol. – 2005. – Т. 8. – С. 59-66.
- World Health Organization et al. Zika virus, microcephaly and Guillain-Barré syndrome situation report. – 2016.