THE GROWTH RATE PHENOTYPIC PROPERTY OF MYCOBACTERIUM TUBERCULOSIS CLINICAL STRAINS: DEPENDENCE ON TUBERCULOSIS LOCALIZATION, TREATMENT, DRUG SUSCEPTIBILITY

Cover Page


Cite item

Full Text

Abstract

The phenotypic properties of the M. tuberculosis strains obtained from patients with pulmonary or extra-pulmonary tuberculosis are  determined by a complex set of factors: the genetic characteristics  of the pathogen, its ability to adapt in vivo and in vitro, the influence of the host’s immune system and chemotherapy. The growth rate as  the phenotypic property is the most accessible for the study of the  host-pathogen relationships at the level of host/strain population  interactions. The aim of the study is to assess in vitro of the growth  rate of M. tuberculosis strains isolated from patients with pulmonary  and extra-pulmonary tuberculosis: untreated and treated (with  surgical and non-surgical treatment) and also sensitive and resistant isolates in comparison with the reference strain H37Rv. To estimate  the growth rate of 116 clinical isolates we have used the modified  method originally developed by von Groll and co-authors: to get the  bacteria growth curve the fluorescence intensity of growing strains  (with indicator resazurin) has been measured daily for 8 days in 96- well plate. The growth rate is determined as the slope of the growth  curve. The mean values of the growth rate have been calculated in  the following groups of patients: 1 — untreated patients with  pulmonary tuberculosis (PT), respiratory material; 2 — non-surgical  treated PT patients, respiratory material; 3 — surgical treated PT  patients (mainly with chronic and hyperchronic process), respiratory  material; 4 — patients like in 3rd group, surgical material; 5 — bone  and joint tuberculosis (BJT), surgical material. In addition, groups of  sensitive and resistant strains have been examined, but there are no  significant differences in growth rates. It has been obtained that  the growth rate of strains isolated from the PT patients is higher than in BJT patients: it can be explained less favorable  conditions for the pathogen vegetation in the BJT. In the case of a  closed tuberculous lesion where the pathogen transmission to  another host is impossible, then the selection of strains with the  property to survive in the tissues of the osteoarticular system is  impossible too, therefor it should be observed only an adaptation of  the pathogen strain population to the individual host. The growth  rate of isolates from untreated PT patients is higher than that of the  treated ones. Comparison of the growth parameters of only MDR  strains 1–5 groups to eliminate the influence of the  sensitivity/resistance has resulted in the same conclusions. We  suggest that the decrease in the growth rate of strains from the  treated PT patients is in not only result of the treatment, but also is  conditioned by adaptation of the pathogen to its external  environment, which is the internal environment of the  macroorganism. To confirm this assumption, the bacterial load of  1,083 diagnostic specimens grouped in a similar manner has been  estimated, taking into account only MDR/XDR strains. In the group  of treated patients the frequency of high bacterial load (CFU ≥ 100)  reached 52.5–63.8% that shows the conserved fitness of bacteria in  such patients. The mean values of the growth rate of the strain  H37Rv non-adapted to the macroorganism (due to numerous  passages on artificial media) are higher than in all groups of clinical  strains. Thus, heterogeneity of phenotypic properties of M.  tuberculosis clinical strains on the basis of growth rate has been  obtained. The growth rate of M. tuberculosis clinical strains is  depended on the tuberculosis localization (PT, BJT) and on the joint  effect of patient treatment and pathogen adaptation to the host. 

About the authors

O. A. Manicheva

St. Petersburg State Research Institute of Phthisiopulmonology

Author for correspondence.
Email: olgamanicheva@rambler.ru

PhD, MD (Biology), Leading Researcher, St. Petersburg  Research Institute of Phthisiopulmonology, St. Petersburg, Russian Federation

194064, Russian Federation, St. Petersburg, Polytehnicheskaya str., 32

Phone: +7 (812) 297-86-31 (office) Fax: +7 (812) 297-16-26

Россия

M. Z. Dogonadze

St. Petersburg State Research Institute of Phthisiopulmonology

Email: fake@neicon.ru

PhD (Biology), Senior Researcher, St. Petersburg Research  Institute of Phthisiopulmonology, St. Petersburg, Russian Federation

Россия

N. N. Melnikova

St. Petersburg State Research Institute of Phthisiopulmonology

Email: fake@neicon.ru

PhD (Medicine), Senior Researcher, St. Petersburg Research  Institute of Phthisiopulmonology, St. Petersburg, Russian Federation

Россия

B. I. Vishnevskiy

St. Petersburg State Research Institute of Phthisiopulmonology

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Chief Researcher, St. Petersburg  Research Institute of Phthisiopulmonology, St. Petersburg, Russian Federation

Россия

S. A. Manichev

St. Petersburg State University

Email: fake@neicon.ru

PhD (Psychology), Associate Professor, Head of the Department of Ergonomics and Engineering Psychology, St. Petersburg  Research Institute of Phthisiopulmonology, St. Petersburg, Russian Federation

Россия

References

  1. Arcos J., Sasindran S.J., Fujiwara N., Turner J., Schlesinger L.S., Torrelles J.B. Human lung hydrolases delineate mycobacterium tuberculosis-macrophage interactions and the capacity to control infection. J. Immunol., 2011, vol. 187, no. 1, pp. 372–381. doi: 10.4049/jimmunol.1100823
  2. Balázsi G., Heath A.P., Shi L., Gennaro M.L. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol., 2008, vol. 4, no. 225, pp. 1–8. doi: 10.1038/msb.2008.63
  3. Ben-Kahla I., Al-Hajoj S. Drug-resistant tuberculosis viewed from bacterial and host genomes. Int. J. Antimicrob. Agents, 2016, vol. 48, iss. 4, pp. 353–360. doi: 10.1016/j.ijantimicag.2016.07.010
  4. Beste D.J.V., Espasa M., Bonde B., Kierzek A.M., Stewart G.R., McFadden J. The genetic requirements for fast and slow growth in mycobacteria. PLoS One, 2009, vol. 4, iss. 4: e5349. doi: 10.1371/journal.pone.0005349
  5. Bhatter P., Chatterjee A., D’souza D., Tolani M., Mistry N. Estimating fitness by competition assays between drug susceptible and resistant mycobacterium tuberculosis of predominant lineages in Mumbai, India. PLoS One, 2012, vol. 7, iss. 3:e33507. doi: 10.1371/journal.pone.0033507
  6. Bhatter P., Mistry N. Fitness of acquired drug resistant Mycobacterium tuberculosis isolates from DOTS compliant patients. Tuberculosis, 2013, vol. 93, iss. 4, pp. 418–424. doi: 10.1016/j.tube.2013.03.006
  7. Bretl D.J., Demetriadou C., Zahrt T.C. Adaptation to environmental stimuli within the host: two-component signal transduction systems of mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev., 2011, vol. 75, no. 4, pp. 566–582. doi: 10.1128/MMBR.05004-11
  8. Casart Y., Turcios L., Florez I., Jaspe R., Guerrero E., de Waard J., Aguilar, D., Hérnandez-Pando R., Salazar L. IS6110 in oriC affects the morphology and growth of Mycobacterium tuberculosis and attenuates virulence in mice. Tuberculosis, 2008, vol. 88. iss. 6, pp. 545–552. doi: 10.1016/j.tube.2008.03.006
  9. Chandra N., Kumar D., Rao K. Systems biology of tuberculosis. Tuberculosis, 2011, vol. 91, iss. 5, pp. 487–496. doi: 10.1016/j.tube.2011.02.008
  10. Chen Y.-Y., Chang J.-R., Huang W.-F., Hsu S.-C., Kuo S.-C., Sun J.-R., Dou H.Y. The pattern of cytokine production in vitro induced by ancient and modern Beijing mycobacterium tuberculosis strains. PLoS One, 2014, vol. 9, iss. 4: e94296. doi: 10.1371/journal.pone.0094296
  11. Click E.S., Winston C.A., Oeltmann J.E., Moonan P.K., Mac Kenzie W.R. Association between Mycobacterium tuberculosis lineage and time to sputum culture conversion. Int. J. Tuberc. Lung Dis., 2013, vol. 17, no. 7, pp. 878–884. doi: 10.5588/ijtld.12.0732
  12. Comas I., Borrell S., Roetzer A., Rose G., Malla B., Kato-Maeda M., Galagan J., Niemann S., Gagneux S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet., 2011, vol. 44, no. 1, pp. 106–110. doi: 10.1038/ng.1038
  13. Dey B., Bishai W.R. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin. Immunol., 2014, vol. 26, iss. 6, pp. 486–496. doi: 10.1016/j.smim.2014.09.002
  14. Eoh H. Metabolomics: a window into the adaptive physiology of Mycobacterium tuberculosis. Tuberculosis, 2014, vol. 94, iss.6, pp. 538–543. doi: 10.1016/j.tube.2014.08.002
  15. Faksri K., Chaiprasert A., Pardieu C., Casali N., Palaga T., Palittapongarnpim P., Prayoonwiwat N., Drobniewski F. Heterogeneity of phenotypic characteristics of the modern and ancestral Beijing strains of Mycobacterium tuberculosis. Asian. Pac. J. Allergy Immunol., 2014, vol. 32, no. 2, pp. 124–132. doi: 10.12932/AP0361.32.2.2013
  16. Flores-Villalva S., Rogriguez-Hernandez E., Rubio-Venegas Y., Canto-Alarcon J.G., Milian-Suazo F. What can proteomics tell us about tuberculosis? J. Microbiol. Biotechnol., 2015, vol. 25, no. 8, pp. 1181–1194. doi: 10.4014/jmb.1502.02008
  17. Forrellad M.A., Klepp L.I., Gioffré A., Sabio y García J., Morbidoni H.R., de la Paz Santangelo M., Cataldi A.A., Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 2013, vol. 4, iss. 1, pp. 3–66. doi: 10.4161/viru.22329
  18. Gillespie S.H., Billington O.J., Breathnach A., McHugh T.D. Multiple drug-resistant mycobacterium tuberculosis: evidence for changing fitness following passage through human hosts. Microb. Drug Resist., 2002, vol. 8, iss. 4, pp. 273–279. doi: 10.1089/10766290260469534
  19. Gomes L.L., Vasconcellos S.E.G., Gomes H.M., Elias A.R., Da Silva Rocha A., Ribeiro S.C.M., Panunto A.C., Ferrazoli L., Da Silva Telles M.A., De Ivens A.M.E., Kritski A.L., Mokrousov I., Manicheva O.A., Lasunskaia E., Suffys P.N. Genetic diversity of the Mycobacterium tuberculosis Beijing family in Brazil and Mozambique and relation with infectivity and induction of necrosis in THP-1 cells. Tuberculosis, 2015, vol. 95, suppl. 1, pp. 190–196. doi: 10.1016/j.tube.2015.02.025
  20. Griffin J.E., Gawronski J.D., DeJesus M.A., Ioerger T.R., Akerley B.J., Sassetti C.M. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog., 2011, vol. 7, no. 9: e1002251. doi: 10.1371/journal.ppat.1002251
  21. Hang N.T.L., Maeda S., Keicho N., Thuong P.H., Endo H. Sublineages of Mycobacterium tuberculosis Beijing genotype strains and unfavorable outcomes of anti-tuberculosis treatment. Tuberculosis, 2015, vol. 95, iss. 3, pp. 336–342. doi: 10.1016/j.tube.2015.02.040
  22. Hu Y., Movahedzadeh F., Stoker N.G., Coates A.R.M. Deletion of the mycobacterium tuberculosis α-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect. Immun., 2006, vol. 74, no. 2, pp. 861–868. doi: 10.1128/iai.74.2.861
  23. Kurtz S., McKinnon K.P., Runge M.S., Ting J.P.-Y., Braunstein M. The SecA2 secretion factor of mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect. Immun., 2006, vol. 74, no. 12, pp. 6855–6864. doi: 10.1128/IAI.01022-06
  24. Lamichhane G., Raghunand T.R., Morrison N.E., Woolwine S.C., Tyagi S., Kandavelou K., Bishai W.R. Deletion of a mycobacterium tuberculosis proteasomal atpase homologue gene produces a slow-growing strain that persists in host tissues. J. Infect. Dis., 2006, vol. 194, iss. 9, pp. 1233–1240. doi: 10.1086/508288
  25. Manina G., Dhar N., McKinney J.D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe, 2015, vol. 17, iss. 1, pp. 32–46. doi: 10.1016/j.chom.2014.11.016
  26. Martinot A.J., Farrow M., Bai L., Layre E., Cheng T.-Y., Tsai J.H., Iqbal J., Annand J.W., Sullivan Z.A., Hussain M.M., Sacchettini J., Moody D.B., Seeliger J.C., Rubin E.J. Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in mycobacterium tuberculosis. PLOS Pathog., 2016, vol. 12, no. 1:e1005351. doi: 10.1371/journal.ppat.1005351
  27. Morcillo N.S., Imperiale B.R., Di Giulio Á., Zumárraga M.J., Takiff H., Cataldi Á.A. Fitness of drug resistant Mycobacterium tuberculosis and the impact on the transmission among household contacts. Tuberculosis, 2014, vol. 94, iss. 6, pp. 672–677. doi: 10.1016/j.tube.2014.08.003
  28. Naidoo C.C., Pillay M. Increased in vitro fitness of multi- and extensively drug-resistant F15/LAM4/KZN strains of Mycobacterium tuberculosis. Clin. Microbiol. Infect., 2014, vol. 20, iss. 6, pp. O361–O369. doi: 10.1111/1469-0691.12415
  29. Perrot S., Dutertre-Catella H., Martin C., Warnet J.-M., Rat P. A new nondestructive cytometric assay based on resazurin metabolism and an organ culture model for the assessment of corneal viability. Cytometry, 2003, Part A, vol. 55A, iss. 1, pp. 7–14. doi: 10.1002/cyto.a.10067
  30. Reiling N., Homolka S., Walter K., Brandenburg J., Niwinski L., Ernst M., Herzmann C., Lange C., Diel R., Ehlers S., Niemann S. Clade-specific virulence patterns of mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. MBio, 2013, vol. 4, no. 4: e00250-13. doi: 10.1128/mBio.00250-13
  31. Romero M.M., Balboa L., Basile J.I., López B., Ritacco V., de la Barrera S.S., Sasiain M.C., Barrera L., Alemán M. Clinical isolates of mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clin. Dev. Immunol., 2012, vol. 2012, 11 p. doi: 10.1155/2012/152546
  32. Schierloh P., Klepp L., Vazquez C., Rocha R.V., Blanco F.C., Balboa L., Schierloh P., Klepp L., Vazquez C., Rocha R.V., Blanco F.C., Balboa L., López B., Ritacco V., Bigi F., Sasiain M.C. Differential expression of immunogenic proteins on virulent mycobacterium tuberculosis clinical isolates. Biomed. Res. Int., 2014, vol. 2014, 13 p. doi: 10.1155/2014/741309
  33. Smith K.L.J., Saini D., Bardarov S., Larsen M., Frothingham R., Gandhi N.R., Jacobs Jr.W.R., Sturm A.W., Lee S. Reduced virulence of an extensively drug-resistant outbreak strain of mycobacterium tuberculosis in a murine model. PLoS One, 2014, vol. 9, iss. 4: e94953. doi: 10.1371/journal.pone.0094953
  34. Spies F.S., von Groll A., Ribeiro A.W., Ramos D.F., Ribeiro M.O., Regina E., Costa D., Martin A., Carlos J., Lucia M., Zaha A., Eduardo P., Silva A. Biological cost in Mycobacterium tuberculosis with mutations in the rpsL, rrs , rpoB, and katG genes. Tuberculosis, 2013, vol. 93, iss. 2, pp. 150–154. doi: 10.1016/j.tube.2012.11.004
  35. Stavrum R., PrayGod G., Range N., Faurholt-Jepsen D., Jeremiah K., Faurholt-Jepsen M., Jeremiah K., Faurholt-Jepsen M., Krarup H., Aabye M.G., Changalucha J., Friis H., Andersen A.B., Grewal H.Ms. Increased level of acute phase reactants in patients infected with modern Mycobacterium tuberculosis genotypes in Mwanza, Tanzania. BMC Infect. Dis., 2014, vol. 14, pp. 309–321. doi: 10.1186/1471-2334-14-309
  36. Swanepoel C.C., Loots D.T. The use of functional genomics in conjunction with metabolomics for Mycobacterium tuberculosis research. Dis. Markers, 2014, vol. 2014, 12 p. doi: 10.1155/2014/124218
  37. Toungoussova O.S., Caugant D.A., Sandven P., Mariandyshev A.O., Bjune G. Impact of drug resistance on fitness of Mycobacterium tuberculosis strains of the W-Beijing genotype. FEMS Immunol. Med. Microbiol., 2004, vol. 42, iss. 3, pp. 281–290. doi: 10.1016/j.femsim.2004.05.012
  38. Von Groll A., Martin A., Portaels F., da Silva P.E.A., Palomino J.C. Growth kinetics of Mycobacterium tuberculosis measured by quantitative resazurin reduction assay: a tool for fitness studies. Brazilian J. Microbiol., 2010, vol. 41, no. 2, pp. 300–303. doi: 10.1590/S1517-83822010000200006
  39. Von Groll A., Martin A., Stehr M., Singh M., Portaels F., da Silva P.E.A., Palomino J.C. Fitness of mycobacterium tuberculosis strains of the W-Beijing and Non-W-Beijing genotype. PLoS One, 2010, vol. 5, iss. 4: e10191. doi: 10.1371/journal.pone.0010191

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Manicheva O.A., Dogonadze M.Z., Melnikova N.N., Vishnevskiy B.I., Manichev S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies