GENOMOSYSTEMATICS OF RICKETTSIAE
- Authors: Shpynov S.N.1, Pozdnichenko N.N.2, Gumenyuk A.S.2, Skiba A.A.2
-
Affiliations:
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology
- Omsk State Technical University
- Issue: Vol 8, No 2 (2018)
- Pages: 107-118
- Section: REVIEWS
- Submitted: 07.09.2018
- Accepted: 07.09.2018
- Published: 07.09.2018
- URL: https://iimmun.ru/iimm/article/view/728
- DOI: https://doi.org/10.15789/2220-7619-2018-2-107-118
- ID: 728
Cite item
Full Text
Abstract
The definition of the term genome was given by the German botanist G. Winkler almost one hundred years ago in 1920. A genome definition for bacterial (rickettsia) with a single chromosome was recently presented from the perspective of information theory, biology and bioinformatics as the information chain of nucleotides. The systematics of rickettsiae (obligate intracellular microorganisms) is based on a limited number of phenotypic characters. Classifications built on the analysis of genes, fragments of genomes and their concatenations cause discussion. Application of the Formal Order Analysis (FOA, http://foarlab.org) in the study of complete genomes allowed to submit the systematics of representatives of the family Rickettsiaceae. This approach confirmed the existence of typhus group (TG), spotted fever group (SFG), and an «ancestral» group within the genus Rickettsia, and allowed the isolation of the Rickettsia felis group within this genus, located between the «ancestral» group and the SFG and the R. akari group on the border between the SFG group and the genus Orientia. The development of the tools of FOA — «Map of Genes» and «Matrix of Similarity» — helped to conduct an in-depth study of the complete genomes of rickettsia, taking into account the characteristics of their genes and noncoding sequences. Application of these instruments, with the help of the obtained classification, confirmed the notion of ecological features of rickettsia, the structure of nosological forms and the epidemiological patterns of rickettsiosis, and made it possible to assess the virulence of the strains of the two most pathogenic species of rickettsia, R. prowazekii and R. rickettsia. In this work, for the first time, a holistic, consistent and multidimensional observation of a set of closely related bacteria (a family of bacteria) and the manifestations associated with them was carried out. The basis of the developed and herein described systematic approach to the study of bacteria is a new mathematical model — the arrangement of nucleotides in a complete genome and its sensitive unambiguous numerical characteristics. A new methodological approach named genomosystematics and based on mathematical modeling of complete genomes of rickettsiae (bacteria) using FOA. Classification of rickettsiae and rickettsioses obtained with the help of this approach corresponds to ecological, epidemiological and etiological principles. Application of the genomosystematics can serve the goals and objectives of preventive medicine. The publication completes a series of scientific works presenting the methodology of an integrated approach based on the application of mathematical analysis tools in the study of objects and laws of natural science disciplines of biological and medical profile.
About the authors
S. N. Shpynov
N.F. Gamaleya National Research Center of Epidemiology and Microbiology
Author for correspondence.
Email: stan63@inbox.ru
PhD, MD (Medicine), Head of Laboratory of Ecology of Rickettsie
123098, Russian Federation, Moscow, Gamaleya str., 18
Phone/fax: +7 (499) 193-61-85 (office)
РоссияN. N. Pozdnichenko
Omsk State Technical University
Email: fake@neicon.ru
Senior Lecturer, Informatics and Computer Engineering Department
РоссияA. S. Gumenyuk
Omsk State Technical University
Email: fake@neicon.ru
PhD (Engineering Sciences), Associate Professor, Informatics and Computer Engineering Department
РоссияA. A. Skiba
Omsk State Technical University
Email: fake@neicon.ru
Software Developer, Informatics and Computer Engineering Department
Россия
References
- Балашов Ю.С., Дайтер А.Б. Кровососущие членистоногие и риккетсии. Л.: Наука, 1973. 251 с. [Balashov Yu.S., Daiter A.B. Krovososushchie chlenistonogie i rikketsii [Blood- sucking arthropods and rickettsias]. Leningrad: Nauka, 1973. 251 p.]
- Громашевский Л.В. Общая эпидемиология. М.: Медицина, 1965. 290 с. [Gromashevskii L.V. Obshchaya epidemiologiya [General epidemiology]. Moscow: Meditsina, 1965. 290 p.]
- Гуменюк А.С., Поздниченко Н.Н., Родионов И.Н., Шпынов С.Н. О средствах формального анализа строя нуклеотидных цепей // Математическая биология и биоинформатика. 2013. Т. 8, № 1. С. 373–397. [Gumenyuk A.S., Postnichenko N.N., Rodionov I.N., Shpynov S.N. On the formal analysis of the building of nucleotide chains. Matematicheskaya biologiya i bioinformatika = Mathematical Biology and Bioinformatics, 2013, vol. 8, no. 1, pp. 373–397. doi: 10.17537/2013.8.373 (In Russ.)]
- Гуменюк А.С., Поздниченко Н.Н., Скиба А.А., Шпынов С.Н. Программа ЭВМ «Матрица сходства нуклеотидных последовательностей по их компонентам». Свидетельство о Государственной регистрации программы ЭВМ в Реестре программ ЭВМ № 2017616679 от 09.06.2017 г. [Gumenuk A.S., Pozdnichenko N.N., Skiba A.A., Shpynov S.N. Computer Program «Matrix of similarity of nucleotide sequences by their components». Certificate of State Registration of the Computer Program in the Register of Computer Programs № 2017616679, 09.06.2017]
- Гуменюк А.С., Поздниченко Н.Н., Скиба А.А., Шпынов С.Н. Программа ЭВМ «Карта генов». Свидетельство о Государственной регистрации программы ЭВМ в Реестре программ ЭВМ № 2017616730 от 13.06.2017 г. [Gumenuk A.S., Pozdnichenko N.N., Skiba A.A., Shpynov S.N. Computer Program «Map of genes». Certificate of State Registration of the Computer Program in the Register of Computer Programs No. 2017616730, 13.06.2017]
- Здродовский П.Ф., Голиневич Е.М. Учение о риккетсиях и риккетсиозах. 3-е изд., перераб. и доп. М.: Медицина, 1972. 496 с. [Zdrodovskii P.F., Golinevich E.M. Uchenie o rikketsiyakh i rikketsiozakh. 3-e izd., pererab. i dop. [The doctrine of rickett sias and rickettsiosis. 3rd edition revised and enlarged]. Moscow: Medicina, 1972. 496 p.]
- Игнатович В.Ф. Антигенные связи риккетсий Провачека и риккетсий Канада, установленные при изучении сывороток больных болезнью Брилля // Журнал гигиены, эпидемиологии, микробиологии и иммунологии. 1977. T. 21, № 1. C. 48–52. [Ignatovich V.F. Antigenic relations of Rickettsia of Prowazeki and Rickettsia Canada established in the study of sera of patients with Brill’s disease. Zhurnal gigieny, epidemiologii, mikrobiologii i immunologii = Journal of Hygiene, Epidemiology, Microbiology and Immunology, 1977, vol. 21, no. 1, pp. 48–52. (In Russ.)]
- Мазур М. Качественная теория информации. М.: Мир, 1974. 240 с. [Mazur M. Kachestvennaya teoriya informatsii. [Qualitative theory of information]. Moscow: Mir, 1974. 240 p.]
- Марков А.В., Захаров И.А. Использование количественных мер сходства генных порядков для построения филогенетических реконструкций на примере бактерий рода Rickettsia // Генетика. 2008. Т. 44, № 4. С. 456–466. [Markov A.V., Zakharov I.A. Application of quantitative measures of gene order similarity to phylogenetic reconstructions for bacteria’s of the genus Rickettsia. Genetika = Genetics, 2008, vol. 44, no. 4, pp. 456–466. (In Russ.)]
- Павловский Е.Н. Основные положения учения о природной очаговости болезней. Эпидемиология и принципы борьбы с инфекционными болезнями. М.: Медицина, 1965, c. 285–308. [Pavlovskii E.N. Osnovnye polozheniya ucheniya o prirodnoi ochagovosti boleznei. Epidemiologiya i printsipy bor’by s infektsionnymi boleznyami [The main provisions of the doctrine of natural foci of disease. Epidemiology and principles of infectious disease control]. Moscow: Meditsina, 1965, pp. 285–308]
- Шпынов С.Н., Гуменюк А.С., Поздниченко Н.Н. Применение числовой характеристики строя нуклеотидов в геномах прокариот для реклассификации внутри рода Rickettsia // Математическая биология и биоинформатика. 2016. Т. 11, № 2. С. 87– 101. [Shpynov S.N., Gumenuk A.S., Pozdnichenko N.N. Application of the numerical characteristic of formal order analysis of the prokaryotic genomes for reclassification within the genus Rickettsia. Matematicheskaya biologiya i bioinformatika = Mathematical Biology and Bioinformatics, 2016, vol. 11, no. 2, pp. 336–350. doi: 10.17537/2016.11.336 (In Russ.)]
- Abarca K., Lopez J., Acosta-Jamett G., Martínez-Valdebenito C. Rickettsia felis in Rhipicephalus sanguineus from two distant Chilean cities. Vector Borne Zoonotic Dis., 2013, vol. 13, iss. 8, pp. 607–609. doi: 10.1089/vbz.2012.1201
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol., 1990, vol. 215, no. 3, pp. 403–410. doi: 10.1016/S0022-2836(05)80360-2
- Angelakis E., Mediannikov O., Parola P., Raoult D. Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol., 2016, vol. 32, iss. 7, pp. 554–564. doi: 10.1016/j.pt.2016.04.009
- Anstead C.A., Chilton N.B. A novel Rickettsia species detected in vole ticks (Ixodes angustus) from Western Canada. Appl. Environ. Microbiol., 2013, vol. 79, no. 24, pp. 7583–7589. doi: 10.1128/AEM.02286-13
- Azad A.F. Epidemiology of murine typhus. Ann. Rev. Entomol., 1990, vol. 35, pp. 553–569. doi: 10.1146/annurev.en.35.010190.003005
- Azad A.F., Radulovic S., Higgins J.A., Noden B.H., Troyer J.M. Flea-borne rickettsioses: ecologic considerations. Emerg. Infect. Dis., 1997, vol. 3, no. 3, pp. 319–327. doi: 10.3201/eid0303.970308
- Bechah Y., Capo C., Mege J.L., Raoult D. Epidemic typhus. Lancet Infect. Dis., 2008, vol. 8, iss. 7, pp. 417–426. doi: 10.1016/S1473-3099(08)70150-6
- Bechah Y., Karkouri K.E., Mediannikov O., Leroy Q., Pelletier N., Robert C., Médigue C., Mege J.L., Raoult D. Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res., 2010, vol. 20, no. 5, pp. 655–663. doi: 10.1101/gr.103564.109
- Bishop-Lilly K.A., Ge H., Butani A., Osborne B., Verratti K., Mokashi V., Nagarajan N., Pop M., Read T.D., Richards A.L. Genome sequencing of four strains of Rickettsia prowazekii, the causative agent of epidemic typhus, including one flying squirrel isolate. Genome Announc, 2013, vol. 1, no. 3: e00399-13. doi: 10.1128/genomeA.00399-13
- Choi Y.-J., Lee E.-M., Park J.-M., Lee K.-M., Han S.-H., Kim J.-K., Lee S.-H., Song H.-J., Choi M.-S., Kim I.-S., Park K.-H., Jang W.-J. Molecular detection of various Rickettsiae in mites (Acari: Trombiculidae) in southern Jeolla Province, Korea. Microbiol. Immunol., 2007, vol. 51, iss. 3, pp. 307–312. doi: 10.1111/j.1348-0421.2007.tb03912.x
- Civen R., Ngo V. Murine typhus: an unrecognized suburban vectorborne disease. Clin. Infect. Dis., 2008, vol. 46, iss. 6, pp. 913–918. doi: 10.1086/527443
- Clark T.R., Noriea N.F., Bublitz D.C., Ellison D.W., Martens C., Lutter E.I., Hackstadt T. Comparative genome sequencing of Rickettsia rickettsii strains that differ in virulence. Infect. Immun., 2015, vol. 83, no. 4, pp. 1568–1576. doi: 10.1128/IAI.03140-14
- Dieme C., Bechah Y., Socolovschi C., Audoly G., Berenger J.M., Faye O., Raoult D., Parola P. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes. Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 26, pp. 8088–8093. doi: 10.1073/pnas.1413835112
- Eisen J.A., Fraser C.M. Phylogenomics: intersection of evolution and genomics. Science, 2003, vol. 300, iss. 5626, pp. 1706–1707. doi: 10.1126/science.1086292
- Eremeeva M.E., Dasch G.A., Silverman D.J. Quantitative analyses of variations in the injury of endothelial cells elicited by 11 isolates of Rickettsia rickettsii. Clin. Diagn. Lab. Immunol., 2001, vol. 8, no. 4, pp. 788–796. doi: 10.1128/CDLI.8.4.788-796.2001
- Felsheim R.F., Kurtti T.J., Munderloh U.G. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS One, 2009, vol. 4, iss. 12: e8361. doi: 10.1371/journal.pone.0008361
- Fournier P.-E., Dumler J.S., Greub G., Zhang J., Wu Y., Raoult D. Gene sequence-based criteria for identification of new rickett sia isolates and description of Rickettsia heilongjiangensis sp. nov. J. Clin. Microbiol., 2003, vol. 41, no. 12, pp. 5456–5465. doi: 10.1128/JCM.41.12.5456-5465.2003
- Fournier P.-E., Raoult D. Current knowledge on phylogeny and taxonomy of Rickettsia spp. Ann. N. Y. Acad. Sci., 2009, vol. 1166, iss. 1, pp. 1–11. doi: 10.1111/j.1749-6632.2009.04528.x
- Gillespie J.J., Beier M.S., Rahman M.S., Ammerman N.C., Shallom J.M., Purkayastha A., Sobral B.S., Azad A.F. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One, 2007, iss. 3: e266. doi: 10.1371/journal.pone.0000266
- Gillespie J.J., Williams K., Shukla M., Snyder E.E., Nordberg E.K., Ceraul S.M., Dharmanolla C., Rainey D., Soneja J., Shallom J.M., Vishnubhat N.D., Wattam R., Purkayastha A., Czar M., Crasta O., Setubal J.C., Azad A.F., Sobral B.S. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One, 2008, vol. 3, iss. 4: e2018. doi: 10.1371/journal.pone.0002018
- Ishikura M., Ando S., Shinagawa Y., Matsuura K., Hasegawa S., Nakayama T., Fujita H., Watanabe M. Phylogenetic analysis of spotted fever group rickettsiae based on gltA, 17- kDa, and rOmpA genes amplified by nested PCR from ticks in Japan. Microbiol. Immunol., 2003, vol. 47, no. 11, pp. 823–832. doi: 10.1111/j.1348-0421.2003.tb03448.x
- Jado I., Oteo J.A., Aldámiz M., Gil H., Escudero R., Ibarra V., Portu J., Portillo A., Lezaun M.J., García-Amil C., Rodríguez-Moreno I., Anda P. Rickettsia monacensis and human disease, Spain. Emerg. Infect. Dis., 2007, vol. 13, no. 9, pp. 1405–1407. doi: 10.3201/eid1309.060186
- Jiang J., Maina A.N., Knobel D.L., Cleaveland S., Laudisoit A., Wamburu K. Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in fleas from human habitats, Asembo, Kenya. Vector Borne Zoonotic Dis., 2013, vol. 13, iss. 8, pp. 550–558. doi: 10.1089/vbz.2012.1123
- Koonin E.V., Mushegian A.R., Galperin M.Y., Walker D.R. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol. Microbiol., 1997, vol. 25, iss. 4, pp. 619–637. doi: 10.1046/j.1365-2958.1997.4821861.x
- Krantz G.W., Walter D.E. A manual of acarology. 3rd ed. Lubbock: Texas Tech University Press, 2009. 807 p.
- Kumar S., Stecher G., Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, vol. 33, iss. 7, pp. 1870–1874. doi: 10.1093/molbev/msw054
- Linnemann C.C., Petzman C.I., Peterson E.D. Acute febrile cerebrovasculitis. A non-spotted fever group rickettsial disease. Arch. Intern. Med., 1989, vol. 149, no. 7, pp. 1682– 1684. doi: 10.1001/archinte.1989.00390070182031
- Mediannikov O., Aubadie-Ladrix M., Raoult D. Candidatus ‘Rickettsia senegalensis’ in cat fleas in Senegal. New Microbes New Infect., 2015, vol. 3, pp. 24–28. doi: 10.1016/j.nmni.2014.10.005
- Merhej V., Angelakis E., Socolovschi C., Raoult D. Genotyping, evolution and epidemiological findings of Rickettsia species. Infect. Genet. Evol., 2014, vol. 25, pp. 122– 137. doi: 10.1016/j.meegid.2014.03.014
- Merhej V., Raoult D. Rickettsial evolution in the light of comparative genomics. Biol. Rev. Camb. Philos. Soc., 2011, vol. 86, iss. 2, pp. 379–405. doi: 10.1111/j.1469-185X.2010.00151.x
- Nichols E., Rindge M.E., Russell G.G. The relationship of the habits of the house mouse and the mouse mite (Allodermanyssus sanguineus) to the spread of rickettsialpox. Ann. Intern. Med., 1953, vol. 39, no. 1, pp. 92–102. doi: 10.7326/0003-4819-39-1-92
- Nicholson W.L., Allen K.E., McQuiston J.H., Breitschwerdt E.B., Little S.E. The increasing recognition of rickettsial pathogens in dogs and people. Trends Parasitol., 2010, vol. 26, iss. 4, pp. 205–212. doi: 10.1016/j.pt.2010.01.007
- Oliveira K.A., Oliveira L.S., Dias C.C.A., Silva Jr.A., Almeida M.R., Almada G., Bouyer D.H., Galvão M.A.M., Mafra C.L. Molecular identification of Rickettsia felis in ticks and fleas from an endemic area for Brazilian Spotted Fever. Mem. Inst. Oswaldo Cruz, 2008, vol. 103, no. 2, pp. 191–194. doi: 10.1590/S0074-02762008000200011
- Parola P., Paddock C.D., Socolovschi C., Labruna M.B., Mediannikov O., Kernif T., Abdad M.Y., Stenos J., Bitam I., Fournier P.-E., Raoult D. Update on tick-borne rickettsioses around the world: a geographic approach. Clin. Microbiol. Rev., 2013, vol. 26, no. 4, pp. 657–702. doi: 10.1128/CMR.00032-13
- Prusinski M.A., White J.L., Wong S.J., Conlon M.A., Egan C., Kelly-Cirino C.D., Laniewicz B.R., Backenson P.B., Nicholson W.L., Eremeeva M.E., Karpathy S.E., Dasch G.A., White D.J. Sylvatic typhus associated with flying squirrels (Glaucomys volans) in New York State, United States. Vector Borne Zoonotic Dis., 2014, vol. 14, iss. 4, pp. 240–244. doi: 10.1089/vbz.2013.1392
- Raoult D., Roux V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev., 1997, vol. 10, no. 4, pp. 694–719.
- Reif K.E., Macaluso K.R. Ecology of Rickettsia felis: a review. J. Med. Entomol., 2009, vol. 46, no. 4, pp. 723–736.
- Shpynov S., Fournier P.-E., Pozdnichenko N., Gumenyuk A., Skiba A. New approaches in the systematics of Rickettsiae. New Microbes New Infect., 2018, vol. 23, pp. 93–102. doi: 10.1016/j.nmni.2018.02.012
- Shpynov S., Pozdnichenko N., Gumenuk A. Approach for classification and taxonomy within family Rickettsiaceae based on the Formal Order Analysis. Microbes Infect., 2015, vol. 17, iss. 11–12, pp. 839–844. doi: 10.1016/j.micinf.2015.09.012
- Simser J.A., Rahman M.S., Dreher-Lesnick S.M., Azad A.F. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol. Microbiol., 2005, vol. 58, iss. 1, pp. 71–79. doi: 10.1111/j.1365-2958.2005.04806.x
- Soares H.S., Barbieri A.R.M., Martins T.F., Minervino A.H.H., de Lima J.T.R., Marcili A., Gennari S.M., Labruna M.B. Ticks and rickettsial infection in the wildlife of two regions of the Brazilian Amazon. Exp. Appl. Acarol., 2015, vol. 65, iss. 1, pp. 125–140. doi: 10.1007/s10493-014-9851-6
- Socolovschi C., Mediannikov O., Raoult D., Parola P. The relationship between spotted fever group Rickettsiae and ixodid ticks. Vet. Res., 2009, vol. 40, no. 4: 34. doi: 10.1051/vetres/2009017
- Socolovschi C., Pages F., Ndiath M.O., Ratmanov P., Raoult D. Rickettsia species in African Anopheles mosquitoes. PLoS One, 2012, vol. 7, iss. 10: e48254. doi: 10.1371/journal.pone.0048254
- Stothard D.R., Clark J.B., Fuerst P.A. Ancestral divergence of Rickettsia bellii from the spotted fever and typhus groups of Rickettsia and antiquity of the genus Rickettsia. Int. J. Syst. Bacteriol., 1994, vol. 44, iss. 4, pp. 798–804. doi: 10.1099/00207713-44-4-798
- Tamura A., Ohashi N., Urakami H., Miyamura S. Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int. J. Syst. Bacteriol., 1995, vol. 45, iss. 3, pp. 589–591. doi: 10.1099/00207713-45-3-589
- Traub R., Wisseman C.L.Jr. The ecology of chigger-borne rickettsiosis (scrub typhus). J. Med. Entomol., 1974, vol. 11, iss. 3, pp. 237–303. doi: 10.1093/jmedent/11.3.237
- Traub R., Wisseman C.L.Jr, Farhang-Azad A. The ecology of murine typhus: a critical review. Trop. Dis. Bull., 1978, vol. 75, no. 4, pp. 237–317.
- Weiss E., Moulder J.W. Order I. Rickettsiales, Gieszczkiewicz 1939. Bergey’s manual of systematic bacteriology. Baltimore: Williams and Wilkins, 1984, vol. 1, pp. 687–703.
- Wisseman Ch.L.Jr. Observation on global aspects of louse-borne typhus transmission and potential. Proc. Intern. Symp. The control of lice and louse-borne diseases. Washington, 1973, pp. 60–66.
- Zemtsova G., Killmaster L.F., Mumcuoglu K.Y., Levin M.L. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp. Appl. Acarol., 2010, vol. 52, no. 4, pp. 383–392. doi: 10.1007/s10493-010-9375-7