T cell thymic selection and peripheral homeostatic proliferation in infectious diseases
- Authors: Kozlov V.A.1,2
-
Affiliations:
- Scientific Research Institute of Fundamental and Clinical Immunology
- Novosibirsk State Medical University
- Issue: Vol 9, No 5-6 (2019)
- Pages: 629-638
- Section: REVIEWS
- Submitted: 04.09.2018
- Accepted: 26.11.2019
- Published: 29.01.2020
- URL: https://iimmun.ru/iimm/article/view/725
- DOI: https://doi.org/10.15789/2220-7619-2019-5-6-629-638
- ID: 725
Cite item
Full Text
Abstract
There is no doubt that infectious agents and host undergo multilayered yet not fully understood interactions. This is primarily due to at least mechanisms resulting in chronic course of infectious process. Acute infection proceeds in parallel with primary immune response and its typical phases, each of which manifests as certain stage in clinical picture featured with disease onset and subsequent recovery. A whole process of immune response developing against infectious agent occurs in peripheral lymphoid organs and immune tissues. With regard to the role of immune system in infectious process, process, two main outstanding issues still remain unanswered: 1) what are the mechanisms of host death in the case of acute infectious process? 2) what is a “fault” of immune system in it? In its inferiority or in abruptly suppressed functions induced by infectious agent, when it “does not have time” to mount an immune response of sufficient power? So far, no answer is still found yet. The second question concerns mechanisms of converting to chronic course of infectious process. The obtained available in publications evidence about an intimately involved thymus as the central immune organ in infectious process of, the main function of which is to ensure developing central immune tolerance to self-antigens accomplished via T-cell positive and negative selection. It turned out that in case of some examined infections due to pathogens, which entered the thymus, such intimate events such as partial tolerance to pathogens and autoimmune reactivity are altered. Moreover, these processes are further aggravated by homeostatic proliferation, which is also induced by an infectious agent. In both cases, it accounts for decreased magnitude of immune response against a certain pathogen, burdened by emergence of autoimmune reactions.
About the authors
V. A. Kozlov
Scientific Research Institute of Fundamental and Clinical Immunology; Novosibirsk State Medical University
Author for correspondence.
Email: vakoz40@yandex.ru
ORCID iD: 0000-0002-1756-1782
Vladimir A. Kozlov, RAS Full Member, PhD, MD (Medicine), Professor, Scientific Director,; Head of the Department Clinical Immunology
630099, Novosibirsk, Yadrintsevskaya str., 14.
Phone: +7 (383) 222-66-27. Fax: +7 (383) 222-70-28.
РоссияReferences
- Козлов В.А. Гомеостатическая пролиферация как основа неизбежного формирования тотального иммунодефицита // Медицинская иммунология. 2014. Т. 16, № 5. С. 403–408. doi: 10.15789/1563-0625-2014-5-403-408
- Козлов В.А. Директивная фаза иммунного ответа в проблеме регуляции // Методологические аспекты современной иммунологии. Новосибирск: Наука, 1991. C. 45–51.
- Козлов В.А. Клетки-супрессоры — основа иммунопатогенеза атеросклероза // Атеросклероз. 2015. Т. 11, № 2. С. 37–42. doi: 10.15789/1563-0625-2016-1-7-14
- Козлов В.А. Клетки-супрессоры — основа иммунопатогенеза аутоиммунных заболеваний // Медицинская иммунология. 2016. Т. 18, № 1. С. 7–15. doi: 10.15789/1563-0625-2016-1-7-14
- Козлов В.А. Клетки-супрессоры — основа иммунопатогенеза онкозаболеваний // Вопросы онкологии. 2016. № 3. С. 390–396.
- Козлов В.А., Демина Д.В. Регуляторные клетки-супрессоры в иммунопатогенгезе аллергических заболеваний // Иммунология. 2017. Т. 38, № 6. С. 327–336. doi: 10.18821/0206-4952-2017-38-6-327-336
- Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K., Kim S., Fritz J.V., Wilmes P., Ueha S., Matsushima K., Ohno H., Olle B., Sakaguchi S., Taniguchi T., Morita H., Hattori M., Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 2013, vol. 500, no. 7461, pp. 232–236. doi: 10.1038/nature12331
- Bomoto A., Kehn P.J., Shevach E.M. Premature escape of double-positive thymocytes to the periphery of young mice. J. Immunol., 1994, vol. 152, pp. 1509–1518.
- Bonasio R., Scimone M.L., Schaerli P., Grabie N., Lichtman A.H., von Andrian U.H. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol., 2006, vol. 7, pp. 1092–1100. doi: 10.1038/ni1385
- Cotta-de-Almeida V., Bonomo A., Mendes-da-Cruz D.A., Riederer I., de Meis J., Lima-Quaresma K.R.F., Vieira-de-Abreu A., Villa-Verde D.M.S., Savino W. Trypanosoma cruzi infection modulates intrathymic contents of Extracellular matrix ligand and receptors and alters thymocyte Migration. Eur. J. Immunol., 2003, vol. 33, pp. 2439–2448. doi: 10.1002/eji.200323860
- Donskoy E., Goldschneider I. Two developmentally distinct populations of dendritic cells inha-bit mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions. J. Immunol., 2003, vol. 170, no. 7, pp. 3514–3521. doi: 10.4049/jimmunol.170.7.3514
- Enouz S., Carrie L., Merkler D., Bevan M.J., Zehn D. Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J. Exp. Med., 2012, vol. 209, no. 10, pp. 1769–1779. doi: 10.1084/jem.20120905
- Ernst B., Lee D.S., Chang J.M., Sprent J., Surh C.D. The peptide ligands mediating positive selection in the hymus control T cell survival and homeostatic proliferation in the periphery. Immunity, 1999, vol. 11, no. 2, pp. 173–181.
- Fulton R.B., Meyerholz D.K., Varga S.M. Foxp3+ CD4 Regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J. Immunol., 2010, vol. 185, no. 4, pp. 2382–2392. doi: 10.4049/jimmunol.1000423
- Gonzalez F.B., Calmon-Hamaty F., Cordeiro S.N.S., Bussy R.F., Spinelli S.V., D’Attilio L., Bottasso O., Savino W., Cotta-de-Almedia V., Villar S.R., Perez A.R. Trypanosoma cruzi experimental infection impacts on the thymic Regulatory N cell compartment. PLoS Negl. Trop. Dis., 2016, vol. 10, no. 1, pp. 1–21. doi: 10.1371/journal.pntd.0004285
- Hadeiba H., Butcher E.C. Thymus-homing dendritic cells in central tolerance. Eur. J. Immunol., 2013, vol. 43, no. 6, pp. 1425–1429. doi: 10.1002/eji.201243192
- Hadeida H., Lahl K., Edalati A., Oderup C., Habtezion A., Pachynski R., Nguyen L., Ghodsi A., Adler S., Butcher E.C. Plasmacytoid dendritic cells transport peripheral antigens to the Thymus to promote central tolerance. Immunol., 2012, vol. 36, no. 3, pp. 438–450. doi: 10.1016/j.immuni.2012.01.017
- Hale J.S., Fink P.J. Back to the thymus: peripheral T cells come home. Immunol. Cell. Biol., 2009, vol. 87, no. 1, pp. 58–64. doi: 10.1038/icb.2008.87
- Jaidane H., San é F., Hiar R., Goffard A., Gharbi J., Geenen V., Hober D. Immunology in the clinic review series; focus on type 1 diabetes and viruses: enterovirus, thymus and type 1 diabetes pathogenesis. Clin. Exp. Immunol., 2012, vol. 168, no. 1, pp. 39–46. doi: 10.1111/j.1365-2249.2011.04558.x.
- Korostoff J.M., Nakada M.T., Faas S.J., Blank K.J., Gaulton G.N. Neonatal exposure to thymotropic gross murine leukemia virus Induces virus-specific immunological nonresponsiveness. J. Exp. Med., 1990, vol. 172, no. 6, pp. 1765–1775.
- Lamontagne L., Jolicoeur P. Low-virulent mouse viruses exhibiting various tropisms in macrophages, T and B cell subpopulations, and thymus stromal cells. Lab. Anim. Sci., 1994, vol. 44, no. 1, pp. 17–24.
- Leake I. Gut microbiota: selecting Clostridia strains that induce TREG cells from gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 2013, vol. 10, no. 9, p. 504. doi: 10.1038/nrgastro.2013.139
- Mendes-da-Cruz D.A., Silva J.S., Cotta-de-Almeida V., Savino W. Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. Eur. J. Immunol., 2006, vol. 36, no. 6, pp. 1486–1493. doi: 10.1002/eji.200535629
- Michaux H., Martens H., Jaidane H., Halouani A., Hober D., Geenen V. How does thymus infection by coxsackievirus contribute to the pathogenesis of type 1 diabetes? Frontiers in Immunol., 2015, vol. 6, pp. 338–343. doi: 10.3389/fimmu.2015.00338
- Milich D.R., Jones J.E., Hughes J.L., Price J., Raney A.K., McLachlan A. Is function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc. Natl. Acad. Sci. USA, 1990, vol. 87, no. 17, pp. 6599–6603.
- Morrot A., Terra-Granado E., Perez A.R., Silva-Barbosa S.D., Milicevic N.M., Farias-de-Oliveira D.A., Berbert L.R., De Meis J., Takiya C.M., Beloscar J., Wang X., Kont V., Peterson P., Bottasso O., Savino W. Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease. PLoS Negl. Trop. Dis., 2011, vol. 5, no. 8: e1268. doi: 10.1371/journal.pntd.0001268
- Nascimbeni M., Pol S., Saunier B. Distinct CD4+CD8+ double-positive T cells in the blood and liver of patients during chronic hepatitis B and C. PLoS One, 2011, vol. 6, no. 5: e20145. doi: 10.1371/journal.pone.0020145
- Nobrega C., Roque S., Nunes-Alves C., Coelho A., Medeiros I., Castro A.G., Appelberg R., Correira-Neves M. Dissemination of Mycobacteria to the thymus renders newly generated T cells tolerant to the invading pathogen. J. Immunol., 2010, vol. 184, pp. 351–358. doi: 10.4049/jimmunol.0902152
- Nunes-Alves C., Nobrega C., Behar S.M., Correia-Neves M. Tolerance has its limits: how the thymus copes with infection. Trends Immunol., 2013, vol. 34, no. 10, pp. 502–510. doi: 10.1016/j.it.2013.06.004
- Perez A.R., Berbert L.R., Lepletier A., Revelli S., Bottasso O., Silva-Barbosa S.D., Savino W. TNF-α is involved in the abnormal thymocyte migration during experimental trypanosoma cruzi infection and favor the export of immature cells. PLoS One, 2012, vol. 7, no. 3: e34360. doi: 10.1371/journal.pone.0034360
- Richards D.M., Delacher M., Goldfarb Y., Kagebein D., Hofer A.-C., Abramson J., Feuerer M. Treg cell differentiation: from thymus to peripheral tissue. Prog. Mol. Biol. Transl. Sci., 2015, vol. 136, pp. 175–205. doi: 10.1016/bs.pmbts.2015.07.014
- Rogers M.C., Lamens K.D., Shafagati N., Johnson M., Oury T.D., Joyce S., Williams J.V. CD4+ regulatory T cells exert differential functions during early and late stages of the immune response to respiratory viruses. J. Immunol., 2018, vol. 201, no. 4, pp. 1253–1266. doi: 10.4049/jimmunol.1800096
- Savino W., Leite-de-Moraes M.C., Hontebeyrie-Joskowicz M, Dardenne M. Studies on thymus in Chagas’disease. I. Changes in the thymic microenvironment in mice acutely infected with Trypanosoma cruzi. Eur. J. Immunol., 1989, vol. 19, no. 9, pp. 1727–1733. doi: 10.1002/eji.1830190930
- Savino W., Villa-Verde D.M., Mendes-da-Cruz D.A., Silva-Monteiro E., Perez A.R., Aoki Mdel P., Bottasso O., Gui ñ az ú N., Silva-Barbosa S.D., Gea S. Cytokines and cell adhesion receptor in the regulation of immunity to Trypanosoma cruzi. Cytokine Growth Factor Rev., 2007, vol. 18, no. 1–2, pp. 107–124. doi: 10.1016/j.cytogfr.2007.01.010
- Silva-Monteiro E., Lorenzato L.R., Nihei O.K., Junqueira M., Rabinovich G.A., Hsu D.K., Liu F.-T., Savino W., Chammas R., Villa-Verde D.M.S. Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanaosoma cruzi infection. Am. J. Pathol., 2007, vol. 170, no. 2, pp. 546–556. doi: 10.2353/ajpath.2007.060389
- Stephen-Victor E., Karnam A., Fontaine T., Beauvais A., Das M., Hegde P., Prakhar P., Holla S., Balaji K.N., Kaveri S.V., Latg é J.P., Aimanianda V., Bayry J. Aspergillus fumigatus cell wall α-(1,3)-glucan stimulates regulatory T-cell polarization by inducing PD-L1 expression on human dendritic cells. J. Infect. Dis., 2017, vol. 216, no. 10, pp. 1281–1294. doi: 10.1093/infdis/jix469
- Stevens C.E., Beasley R.P., Tsui J., Lee W.C. Vertical transmission of hepatitis B antigen in Taiwan. N. Engl. J. Med., 1975, vol. 292, no. 15, pp. 771–774. doi: 10.1056/NEJM197504102921503
- Takada H., Takayanag H. The mechanisms of T cell selection in the thymus. Trends Immunol., 2017, vol. 38, no. 11, pp. 805–816. doi: 10.1016/j.it.2017.07.010
- Thiault N., Darrigues J., Adoue V., Gros M., Binet B., Perals C., Leobon B., Fazilleau N., Joffre O.P., Robey E.A., van Meerwijk J.P., Romagnoli P. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol., 2015, vol. 16, no. 6, pp. 628–634. doi: 10.1038/ni.3150.
- Wang J., Cardoso R., Marreros N., M ü ller N., Lundstr ö m-Stadelmann B., Siffert M., Vuitton D.A., Bou é F., Lin R., Wen H., Gottstein B. Foxp3+ Tregs 1 as a potential target for immunotherapy against primary infection with Echinococcus multilocularis eggs. Infect. Immun., 2018, vol. 86, iss. 10: e00542-18. doi: 10.1128/IAI.00542-18
- Weiss L., Roux A., Garcia S., Demouchy C., Haeffner-Cavaillon N., Kazatchkine M.D., Gougeon M.L. Persistent expansion, in a Human immunodeficiency virus-infected person, of Vβ-restricted CD4+CD8+ T lymphocytes that express cytotoxicityassociated molecules and are committed to produce interferon-γ and tumor necrosis factor-α. J. Infect. Dis., 1998, vol. 178, iss. 4, pp. 1158–1162. doi: 10.1086/515674