In vitro dendritic cell maturation isolated from healthy people and patients with Staphylococcus aureuscaused chronic osteomyelitis

Cover Page


Cite item

Full Text

Abstract

Here we present the data comparing maturation of peripheral blood mononuclear cell-derived dendritic cells (DCs) isolated from healthy volunteers and Staphylococcus aureus-positive patients with chronic osteomyelitis. Dendritic cells were cultured in a standard maturation cell medium (RPMI-1640,  supplemented with antibiotics, L-glutamine, 15% calf embryonic serum) added with interleukin-4 and granulocyte-macrophage colony-stimulating factor, followed by adding a stimulating factor cocktail containing interleukin-1β, tumor necrosis factor-α, interleukin-6, and prostaglandin E2. Dendritic cell maturation was analyzed by estimating visual characteristics under Zeiss ODSERVER.Z1 inverted microscope using Axiovision Rel.4.8 imaging software as well as light and phase-contrast microscopy at magnification of ×40, ×100, ×200, ×400, ×630. Dendritic cell immunophenotyping was carried out by using a panel of anti-human monoclonal antibodies: anti-CD80 FITC-conjugated, anti-CD86 (B7–2) PE-conjugated, anti-HLA-DR PC7-conjugated (all from Beckman Coulter, USA), anti-CD14 PerCP-Cy5.5-conjugated, anti-CD83 APC-conjugated, anti-CD40 PE-Cy7-conjugated (Becton Dickinson, USA) as well as isotype-matched control antibodies on the FACS Canto II f low cytometer (Becton Dickinson, USA). It was shown that while maturation dendritic cells derived both from patients or volunteers increased in size and underwent dendrite formation. Moreover, expression of CD86, CD83, CD80, and CD40 markers on dendritic cells derived from patients vs. volunteers was lowered. However, DC stimulation resulted in significantly increased percentage of DCs positive for CD83 DCs co-stimulation molecules CD86, CD80, CD40 chronic osteomyelitis. However, such differences found in immature DCs in both groups disappeared upon maturation, so that expression of the key markers on day 10 was maintained at close level. In particular, expression of CD83 differentiation marker and the CD80 co-stimulation molecule on DCs from patients vs. volunteers was increased stronger. Thus, a maturation potential in DCs isolated from patients with Staphylococcus aureus-caused chronic osteomyelitis was not impaired in vitro. The data obtained open up an opportunity to use dendritic cells as a natural adjuvant-substituting component for development of individualized vaccines in treatment and prevention of recurrent chronic osteomyelitis.

About the authors

Ju. P. Rubtsova

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Email: rubincherry@yandex.ru

Rubtsova Julia Pavlovna - PhD (Biology), Researcher, Biotechnology Department, Privolzhsky Research Medical University, Ministry of Health of the Russian Federation.

603950, Nizhny Novgorod, Minin and Pozharsky sq., 10/1.

Phone: +7 (831) 436-66-35 (office); +7 (905) 192-89-77 (mobile). Fax: +7 (831) 439-01-84.

Россия

D. Ya. Aleynik

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Email: daleynik@yandex.ru

Aleynik Diana Yakovlevna - PhD (Medicine), Senior Researcher, Biotechnology Department, Privolzhsky Research Medical University, Ministry of Health of the Russian Federation.

603950, Nizhny Novgorod, Minin and Pozharsky sq., 10/1.

Россия

O. P. Zhivtsov

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Email: osteolog@yandex.ru

Zhivtsov Oleg Petrovich - PhD (Medicine), Researcher, Purulent Traumatology Department, Privolzhsky Research Medical University, Ministry of Health of the Russian Federation.

603950, Nizhny Novgorod, Minin and Pozharsky sq., 10/1.

Россия

V. N. Mitrofanov

Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: osteolog@yandex.ru

Mitrofanov Vyacheslav Nykolaevich - PhD (Medicine), Senior Researcher, Purulent Traumatology Department, Privolzhsky Research Medical University, Ministry of Health of the Russian Federation.

603950, Nizhny Novgorod, Minin and Pozharsky sq., 10/1.

Россия

References

  1. Ключевский В.В., Сметанин С.М., Соловьев И.Н. Лечение открытых переломов бедренной кости // Гений ортопедии. 2012. № 1. С. 11–14.
  2. Кузнецова А.В., Данилова Т.И., Гладских О.П., Иванов А.А., Пальцев М.А. Дендритные к летки и их использование в иммунотерапии // Молекулярная медицина. 2003. № 3. С. 3–17.
  3. Пальцев М.А. Введение в молекулярную медицину. М.: Медицина, 2004. 496 с.
  4. Пащенков М.В., Пинегин Б.В. Основные свойства дендритных к леток // Иммунология. 2001. № 4. С. 7–16.
  5. Cтоляров Е.А., Батаков Е.А., А лексеев Д.Г., Батаков В.Е. Замещение остаточных костных полостей после некрсеквестрэктомии при хроническом остеомиелите // Гений ортопедии. 2009. № 4. С. 11–16.
  6. Талаев В.Ю., Талаева М.В., Лебедев М.Ю., Воронина Е.В., Живцов О.П., Заиченко И.Е., Бабайкина О.Н. Фенотипическая характеристика к лассических дендритных к леток крови и их субпопуляций в норме и при остеомиелите // Иммунология. 2017. Т. 38, № 4. С. 229–234.
  7. Тевс Д.С., Калуцкий П.В., Лазаренко В.А. Нарушения иммунного и цитокинового статуса у больных хроническим остеомиелитом костей стопы // Казанский медицинский журнал. 2013. T. 94, № 4. С. 460–463.
  8. Чепелева М.В., К люшин Н.М. Иммунологические особенности хронического посттравматического остеомиелита // Травматология и ортопедия России. 2012. № 2. С. 67–70.
  9. Armbruster N.S., Richardson J.R., Schreiner J., Klenk J., Günter M., Kretschmer D., Pöschel S., Schenke-Layland K., Kalbacher H., Clark K., Autenrieth S.E. PSM Peptides of Staphylococcus aureus activate the p38-CREB pathway in dendritic cells, thereby modulating cytokine production and T cell priming. J. Immunol., 2016, vol. 196, рр. 1284–1292. doi: 10.4049/jimmunol.1502232
  10. Bhattacharya R., Kundu B., Nandi S.K., Basu D. Systematic approach to treat chronic osteomyelitis through localized drug delivery system: bench to bed side. Mater. Sci. Eng. C, 2013, vol. 33, no. 7, pp. 3986–3993. doi: 10.1016/j.msec.2013.05.036
  11. Bowen T.R., Widmaier J.C. Host classification predicts infection after open fracture. Clin. Orthopaed. Rel. Res., 2005, vol. 433, pp. 205–211. doi: 10.1097/01.blo.0000150345.51508.74
  12. Byun E.H., Kim W.S., Shin A.R., Kim J.S., Whang J., Won C.J., Choi Y., Kim S.Y., Koh W.J., Kim H.J., Shin S.J. Rv0315, a novel immunostimulatory antigen of Mycobacterium tuberculosis, activates dendritic cells and drives Th1 immune responses. Mol. Med., 2012, vol. 90, pp. 285–298. doi: 10.1007/s00109-011-0819-2
  13. Cruciani M., Etna M.P., Camilli R., Giacomini E., Percario Z.A., Severa M., Sandini S., Rizzo F., Brandi V., Balsamo G., Polticelli F., Affabris E., Pantosti A., Bagnoli F., Coccia E.M. Staphylococcus aureus Esx Factors Control Human Dendritic Cell Functions Conditioning Th1/Th17 Response. Cell Infect. Microbiol. 2017, vol. 21, no. 7, p. 330. doi: 10.3389/fcimb.2017.00330
  14. Dumont A.L., Nygaard T.K., Watkins R.L., Smith A., Kozhaya L., Kreiswirth B.N., Shopsin B., Unutmaz D., Voyich J.M., Torres V.J. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol. Microbiol., 2011, vol. 79, no. 3, pp. 814–825.
  15. Etna M.P., Giacomini E., Severa M., Pardini M., Aguilo N., Martin C., Coccia E.M. A human dendritic cell-based in vitro model to assess Mycobacterium tuberculosis SO2 vaccine immunogenicity. Altex, 2014, vol. 31, no. 4, pp. 397–406. doi: 10.14573/altex.1311041
  16. Filley A.C., Dey M. Neurooncol. Dendritic cell based vaccination strategy: an evolving paradigm. J. Neuro-Oncol., 2017, vol. 133, no. 2, pp. 223–235. doi: 10.1007/s11060-017-2446-4
  17. Hong S.J., Kim S.K., Ko E.B., Yun C.H., Han S.H. Wall teichoic acid is an essential component of Staphylococcus aureus for the induction of human dendritic cell maturation. Mol. Immunol., 2017, vol. 81, рр. 135–142. doi: 10.1016/j.molimm.2016.12.008
  18. Kinik H., Karaduman M. Cierny-Mader Type III chronic osteomyelitis: the results of patients treated with debridement, irrigation, vancomycin beads and systemic antibiotics. Int. Orthop., 2008, vol. 32, no. 4, рр. 551–558. doi: 10.1007/s00264-007-0342-9
  19. Kumar G., Roger P.M., Ticchioni M., Trojani C., Bernard de Dompsur R., Bronsard N., Carles M., Bernard E. T cells from chronic bone infection show reduced proliferation and a high proportion of CD28–CD4 T cells. Clin. Exp. Immunol., 2014, vol. 176, no. 1, pp. 49–57. doi: 10.1111/cei.12245
  20. Lin Y., Okada H. Cellular immunotherapy for malignant gliomas. Expert. Opin. Biol. Ther., 2016, vol. 16, no. 10, pp. 1265–1275. doi: 10.1080/14712598.2016.1214266
  21. McCormick S., Shaler C.R., Xing Z. Pulmonary mucosal dendritic cells in T-cell activation: implications for TB therapy. Expert Rev. Respir. Med., 2011, vol. 5, no. 1, pp. 75–85. doi: 10.1586/ers.10.81
  22. Naique S.B., Pearse M., Nanchahal J. Management of severe open tibial fractures. J. Bone Joint Surg., 2006, vol. 88, pp. 351–357. doi: 10.1302/0301-620X.88B3.17120
  23. Palucka K., Banchereau J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 2012, vol. 12, no. 4, pp. 265–277. doi: 10.1038/nrc3258
  24. Romano E., Rossi M., Ratzinger G., de Cos M.-A., Chung D.J., Panageas K.S. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T-cell activation in vitro, elicit antitumor T-cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo. Clin. Cancer Res., 2011, vol. 17, pp. 1984–1997. doi: 10.1158/1078-0432.CCR-10-3421
  25. Saliba H., Heurtault B., Bouharoun-Tayoun H., Flacher V., Frisch B, Fournel S., Chamat S. Enhancing tumor specific immune responses by transcutaneous vaccination. Expert Rev. Vaccines, 2017, vol. 16, no. 11, pp. 1079–1094. doi: 10.1080/14760584.2017.1382357
  26. Schindler D., Gutierrez M.G., Beineke A., Rauter Y., Rohde M., Foster S., Goldmann O., Medina E. Dendritic cells are central coordinators of the host immune response to Staphylococcus aureus bloodstream infection. Am. J. Pathol., 2012, vol. 181, no. 4, рр. 1327–1337. doi: 10.1016/j.ajpath.2012.06.039
  27. Segura Е. Review of mouse and human dendritic cell subsets. Meth. Mol. Biol., 2016, vol. 1423, pp. 3–15. doi: 10.1007/978-1-4939-3606-9_1
  28. Timmerman J.M., Czerwinski D.K., Davis T.A., Hsu F.J., Benike C., Hao Z.M., Taidi B., Rajapaksa R., Caspar C.B., Okada C.Y., van Beckhoven A., Liles T.M., Engleman E.G., Levy R. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood, 2002, vol. 99, no. 5, pp. 1517–1526. doi: 10.1182/blood.V99.5.1517
  29. Tong S.Y., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, vol. 28, no. 3, pp. 603–661. doi: 10.1128/CMR.00134-14
  30. Wagner C., Heck D., Lautenschläger K., Iking-Konert C., Heppert V., Wentzensen A., Hänsch G.M. T lymphocytes in implant-associated posttraumatic osteomyelitis: identification of cytotoxic T effector cells at the site of infection. Shock, 2006, vol. 25, no. 3, pp. 241–246. doi: 10.4061/2010/526740
  31. Wagner J.M., Jaurich H., Wallner C., Abraham S., Becerikli M., Dadras M., Harati K., Duhan V., Khairnar V., Lehnhardt M., Behr B. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J. Orthop. Res., 2017, vol. 35, no. 11, pp. 2425–2434. doi: 10.1002/jor.23555
  32. Wang Y., Wang J., Meng J., Jiang H., Zhao J., Qian H., Chen T. Epigenetic modification mediates the increase of LAG-3+ T cells in chronic osteomyelitis. Inflammation, 2017, vol. 40, no. 2, pp. 414–421. doi: 10.1007/s10753-016-0486-0
  33. Wu X., Xu F. Dendritic cells during Staphylococcus aureus infection: subsets and roles. J. Transl. Med., 2014, vol. 12, pp. 358 doi: 10.1186/s12967-014-0358-z
  34. Yu J.S., Liu G., Ying H., Yong W.H., Black K.L., Wheeler C.J. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res., 2004, vol. 64, pp. 4973–4979. doi: 10.1158/0008-5472.CAN-03-3505
  35. Yu J.S., Wheeler C.J., Zeltzer P.M., Ying H., Finger D.N., Lee P.K., Yong W.H., Incardona F., Thompson R.C., Riedinger M.S., Zhang W., Prins R.M., Black K.L. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res., 2001, vol. 61, no. 3, pp. 842–847. doi: 10.1158/0008-5472.CAN-03-3505

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Rubtsova J.P., Aleynik D.Y., Zhivtsov O.P., Mitrofanov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies