Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection

Cover Page

Cite item

Abstract

Here we review currently available data showing that innate immune signs predisposing to recurrent and invasive pneumococcal infections were identified in children. Streptococcus pneumoniae (pneumococcus) belongs to Grampositive bacteria being the major cause of morbidity and mortality in infants, especially in developing countries and in communities with low socioeconomic status. Due to the lack of anti-pneumococcal vaccination, the significant proportion of pneumococcus carriers develop non-invasive (pneumonia, otitis media, sinusitis) and severe invasive (bacteremia/septicemia, meningitis) pneumococcal infection. A great deal of diverse factors related to pneumococcus biological features (virulence factors) as well individualized host-specific immunity are implicated in efficient bacterial penetration across the mucous membranes. The TLR signaling system plays a crucial role in the human nonspecific defense upon the first encounter with the pathogen. Various TLRs comprise the first pattern recognition receptor fami ly ever described which sense ligands derived from the outer bacterial wall. The complement system is the ancient innate immunity component mainly involved in intravascular elimination of bacterial agents. In addition, the complement proteins serve as a bridge between innate and adaptive immunity, ensuring optimal conditions for B- and T-cell maturation and differentiation. Because pneumococcus secretes the IgA protease, a local protective effects related to IgA antibodies might not be so prominent. Therefore, B-cell immunodeficiency and impaired complement system hold a lead place among congenital causes resulting in severe and recurrent pneumococcal infections in children. Thus, based on available data, we concluded that impaired B-cell function, the complement components deficiency as well as receptor-recognition receptors (TLR-2, -9, -4, MYD88 adapter protein, TLR cascade enzymes: IRAK4, NEMO, NOD-like receptors: NOD2, NLRP3; C-type lectins: MBL, Dextin-2, and, possibly, ficoline) play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections play the most important role among congenital immunodeficiencies predisposing to invasive and recurrent pneumococcal infections, and should be used as a rationale for immunological surveillance and organizing immunogenetics screening in these patients. 

 

About the authors

S. Yu. Tereshchenko

Scientific Research Institute of Medical Problems of the North, Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: legise@mail.ru
ORCID iD: 0000-0002-1605-7859

Tereshchenko S.Yu., PhD, MD (Medicine), Head of Clinical Department of Childhood Somatic and Mental Health

Contacts: Sergey Yu. Tereshchenko 660022, Russian Federation, Krasnoyarsk, Partizana Zheleznyaka str., 3g, Scientific Research Institute of Medical Problems of the North. Phone/Fax: +7 (391) 228-06-83.

Russian Federation

M. V. Smolnikova

Scientific Research Institute of Medical Problems of the North, Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences

Email: smarinv@ya.ru
ORCID iD: 0000-0001-9984-2029
Smolnikova M.V., PhD (Biology), Leading Researcher, Laboratory of Molecular and Cell Pathology and Physiology Russian Federation

References

  1. Терещенко С.Ю., Каспаров Э.В., Смольникова М.В., Кувшинова Е.В. Дефицит маннозосвязывающего лектина при заболеваниях респираторного тракта //Пульмонология. 2016. Т. 26, № 6. С. 748–752. doi: 10.18093/0869-0189-2016-26-6-748-752
  2. Akahori Y., Miyasaka T., Toyama M., Matsumoto I., Miyahara A., Zong T., Ishii K., Kinjo Y., Miyazaki Y., Saijo S., Iwakura Y., Kawakami K. Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae. BMC Immunol., 2016, vol. 17: 1. doi: 10.1186/s12865-015-0139-3
  3. Ali Y.M., Lynch N.J., Haleem K.S., Fujita T., Endo Y., Hansen S., Holmskov U., Takahashi K., Stahl G.L., Dudler T., Girija U.V., Wallis R., Kadioglu A., Stover C.M., Andrew P.W., Schwaeble W.J. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog., 2012, vol. 8, no. 7: e1002793. doi: 10.1371/journal.ppat.1002793
  4. Andersen P., Permin H., Andersen V., Schejbel L., Garred P., Svejgaard A., Barington T. Deficiency of somatic hypermutation of the antibody light chain is associated with increased frequency of severe respiratory tract infection in common variable immunodeficiency. Blood, 2005, vol. 105, no. 2, pp. 511–517. doi: 10.1182/blood-2003-12-4359
  5. Bogaert D., De Groot R., Hermans P.W. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis., 2004, vol. 4, no. 3, pp. 144–154. doi: 10.1016/S1473-3099(04)00938-7
  6. Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol., 2015, vol. 33, pp. 257–290. doi: 10.1146/annurev-immunol-032414-112240
  7. Carneiro-Sampaio M., Coutinho A. Immunity to microbes: lessons from primary immunodeficiencies. Infect. Immun., 2007, vol. 75, no. 4, pp. 1545–1555. doi: 10.1128/IAI.00787-06
  8. Chapman S.J., Hill A.V. Human genetic susceptibility to infectious disease. Nat. Rev. Genet., 2012, vol. 13, no. 3, pp. 175–188. doi: 10.1038/nrg3114
  9. De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine, 2015, vol. 74, no. 2, pp. 181–189. doi: 10.1016/j.cyto.2015.02.025
  10. Eisen D.P. Mannose-binding lectin deficiency and respiratory tract infection. J. Innate Immun., 2010, vol. 2, no. 2, pp. 114–122. doi: 10.1159/000228159
  11. Eisen D.P., Dean M.M., Boermeester M.A., Fidler K.J., Gordon A.C., Kronborg G., Kun J.F., Lau Y.L., Payeras A., Valdimarsson H., Brett S.J., Ip W.K., Mila J., Peters M.J., Saevarsdottir S., Van Till J.W., Hinds C.J., Mcbryde E.S. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin. Infect. Dis., 2008, vol. 47, no. 4, pp. 510–516. doi: 10.1086/590006
  12. Endo Y., Takahashi M., Iwaki D., Ishida Y., Nakazawa N., Kodama T., Matsuzaka T., Kanno K., Liu Y., Tsuchiya K., Kawamura I., Ikawa M., Waguri S., Wada I., Matsushita M., Schwaeble W.J., Fujita T. Mice deficient in ficolin, a lectin complement pathway recognition molecule, are susceptible to Streptococcus pneumoniae infection. J. Immunol., 2012, vol. 189, no. 12, pp. 5860–5866. doi: 10.4049/jimmunol.1200836
  13. Estimated Hib and pneumococcal deaths for children under 5 years of age. World Health Organization, 2012. URL: http://www.who. int/immunization/monitoring_surveillance/burden/estimates/en
  14. Gobin K., Hintermeyer M., Boisson B., Chrabieh M., Gandil P., Puel A., Picard C., Casanova J.L., Routes J., Verbsky J. IRAK4 Deficiency in a patient with recurrent pneumococcal infections: case report and review of the literature. Front. Pediatr., 2017, vol. 5: 83. doi: 10.3389/fped.2017.00083
  15. Goldblatt D. Immunisation and the maturation of infant immune responses. Dev. Biol. Stand., 1998, vol. 95, pp. 125–132.
  16. Hjuler T., Wohlfahrt J., Staum Kaltoft M., Koch A., Biggar R.J., Melbye M. Risks of invasive pneumococcal disease in children with underlying chronic diseases. Pediatrics, 2008, vol. 122, no. 1, pp. e26–32. doi: 10.1542/peds.2007-1510
  17. Ingels H.A. Recurrent invasive pneumococcal disease in children — host factors and vaccination response. Dan. Med. J., 2015, vol. 62, no. 7.
  18. Ingels H., Schejbel L., Lundstedt A.C., Jensen L., Laursen I.A., Ryder L.P., Heegaard N.H., Konradsen H., Christensen J.J., Heilmann C., Marquart H.V. Immunodeficiency among children with recurrent invasive pneumococcal disease. Pediatr. Infect. Dis. J., 2015, vol. 34, no. 6, pp. 644–651. doi: 10.1097/INF.0000000000000701
  19. Janeway C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol., 1989, vol. 54, pp. 1–13.
  20. Kadioglu A., Weiser J.N., Paton J.C., Andrew P.W. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol., 2008, vol. 6, no. 4, pp. 288–301. doi: 10.1038/nrmicro1871
  21. Kilpatrick D.C., Chalmers J.D. Human L-ficolin (ficolin-2) and its clinical significance. J. Biomed. Biotechnol., 2012, vol. 2012: 138797. doi: 10.1155/2012/138797
  22. Klein M., Obermaier B., Angele B., Pfister H.W., Wagner H., Koedel U., Kirschning C.J. Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J. Infect. Dis., 2008, vol. 198, no. 7, pp. 1028–1036. doi: 10.1086/591626
  23. Koedel U., Rupprecht T., Angele B., Heesemann J., Wagner H., Pfister H.W., Kirschning C.J. MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain, 2004, vol. 127, pt. 6, pp. 1437–1445. doi: 10.1093/brain/awh171
  24. Koppe U., Suttorp N., Opitz B. Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol., 2012, vol. 14, no. 4, pp. 460–466. doi: 10.1111/j.1462-5822.2011.01746.x
  25. Krarup A., Sorensen U.B., Matsushita M., Jensenius J.C., Thiel S. Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-ficolin, and H-ficolin. Infect. Immun., 2005, vol. 73, no. 2, pp. 1052–1060. doi: 10.1128/IAI.73.2.1052-1060.2005
  26. Ku C.L., Picard C., Erdos M., Jeurissen A., Bustamante J., Puel A., Von Bernuth H., Filipe-Santos O., Chang H.H., Lawrence T., Raes M., Marodi L., Bossuyt X., Casanova J.L. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J. Med. Genet., 2007, vol. 44, no. 1, pp. 16–23. doi: 10.1136/jmg.2006.044446
  27. Oksenhendler E., Gerard L., Fieschi C., Malphettes M., Mouillot G., Jaussaud R., Viallard J.F., Gardembas M., Galicier L., Schleinitz N., Suarez F., Soulas-Sprauel P., Hachulla E., Jaccard A., Gardeur A., Theodorou I., Rabian C., Debre P., Group D.S. Infections in 252 patients with common variable immunodeficiency. Clin. Infect. Dis., 2008, vol. 46, no. 10, pp. 1547–1554. doi: 10.1086/587669
  28. Patarcic I., Gelemanovic A., Kirin M., Kolcic I., Theodoratou E., Baillie K.J., De Jong M.D., Rudan I., Campbell H., Polasek O. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci. Rep., 2015, vol. 5: 16119. doi: 10.1038/srep16119
  29. Picard C., Bobby Gaspar H., Al-Herz W., Bousfiha A., Casanova J.L., Chatila T., Crow Y.J., Cunningham-Rundles C., Etzioni A., Franco J.L., Holland S.M., Klein C., Morio T., Ochs H.D., Oksenhendler E., Puck J., Tang M.L.K., Tangye S.G., Torgerson T.R., Sullivan K.E. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J. Clin. Immunol., 2018, vol. 38, no. 1, pp. 96–128. doi: 10.1007/s10875-017-0464-9
  30. Picard C., Casanova J.L., Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin. Microbiol. Rev., 2011, vol. 24, no. 3, pp. 490–497. doi: 10.1128/CMR.00001-11
  31. Rabes A., Suttorp N., Opitz B. Inflammasomes in pneumococcal infection: innate immune sensing and bacterial evasion strategies. Curr. Top Microbiol. Immunol., 2016, vol. 397, pp. 215–227. doi: 10.1007/978-3-319-41171-2_11
  32. Ram S., Lewis L.A., Rice P.A. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin. Microbiol. Rev., 2010, vol. 23, no. 4, pp. 740–780. doi: 10.1128/CMR.00048-09
  33. Rathinam V.A.K., Chan F.K. Inflammasome, inflammation, and tissue homeostasis. Trends Mol. Med., 2018. doi: 10.1016/j.molmed.2018.01.004
  34. Resnick E.S., Moshier E.L., Godbold J.H., Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood, 2012, vol. 119, no. 7, pp. 1650–1657. doi: 10.1182/blood-2011-09-377945
  35. Roy S., Knox K., Segal S., Griffiths D., Moore C.E., Welsh K.I., Smarason A., Day N.P., Mcpheat W.L., Crook D.W., Hill A.V., Oxford Pneumoccocal Surveillance G. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet, 2002, vol. 359, no. 9317, pp. 1569–1573. doi: 10.1016/S0140-6736(02)08516-1
  36. Smelaya T.V., Belopolskaya O.B., Smirnova S.V., Kuzovlev A.N., Moroz V.V., Golubev A.M., Pabalan N.A., Salnikova L.E. Genetic dissection of host immune response in pneumonia development and progression. Sci. Rep., 2016, vol. 6, pp. 35021. doi: 10.1038/srep35021
  37. Smolnikova M.V., Freidin M.B., Tereshchenko S.Y. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics, 2017, vol. 69, no. 6, pp. 409–413. doi: 10.1007/s00251-017-0984-8
  38. Troldborg A., Hansen A., Hansen S.W., Jensenius J.C., Stengaard-Pedersen K., Thiel S. Lectin complement pathway proteins in healthy individuals. Clin. Exp. Immunol., 2017, vol. 188, no. 1, pp. 138–147. doi: 10.1111/cei.12909
  39. Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J., 2005, vol. 272, no. 24, pp. 6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x

Copyright (c) 2019 Tereshchenko S.Y., Smolnikova M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies