Prevalence of carbapenemase-producing Klebsiella pneumonia in Gomel Region of Belarus and their sensitivity to antibiotics, antibiotic combinations, and decontaminants

Cover Page


Cite item

Full Text

Abstract

Here, we characterized in public health organizations prevalence of carbapenemase-producing Klebsiella pneumoniae, sensitivity to antimicrobial agents (AMAs), combined antimicrobial agents, and decontaminants. For this, there were selected 58 clinical isolates of K. pneumoniae resistant to carbapenems and/or polymyxins and examined within the microbiological monitoring program. Genes encoding KPC, OXA-48, VIM, IMP, NDM carbapenemases were detected by real-time multiplex PCR. Sensitivity to antimicrobial agents was determined by an automated method on a microbiological VITEK-2 Compact analyzer (bioMérieux, France) and by serial broth microdilution method. Sensitivity to 11 dual antimicrobial agent combinations was determined by a modified method of multiple combination bactericidal antibiotic testing. As a part of combinations, AMAs at pharmacokinetic/pharmacodynamics (PK/PD) threshold concentrations (meropenem — 8 μg/ml, amikacin — 16 μg/ml, levofloxacin — 1 μg/ml, tigecycline — 0.5 μg/ml, phosphomycin — 32 μg/ml, colistin — 2 μg/ml) were tested. Susceptibility to 7 combined decontaminants of different composition was determined by the suspension method. Carbapenemase genes were detected in 22 K. pneumoniae clinical isolates, of which 19 isolates contained a blaOXA-48 gene and 3 isolates — gene blaNDM. Carbapenemase producing K. pneumoniae were identified in 10 Gomel public health organizations and five regional centers of the Gomel region. The majority of such strains were isolated from patients in ICU (63.6%) and surgical departments (27.3%). Tigecycline (100% of the sensitive isolates, МIC50 — 1 μg/ml, MIC90 — 1 μg/ml) and colistin (86.4% of the sensitive isolates, МIC50 — 0.5 μg/ml, MIC90 — 4 μg/ml) exhibited the highest activity against carbapenemase-producing K. pneumoniae, whereas aminopenicillins, cephalosporins, aztreonam, aminoglycosides, fluoroquinolones, chloramphenicol (no sensitive isolates) had exhibited the lowest efficacy. Bactericidal activity of all antibiotic combinations containing colistin was shown against 86.4–95.5% of K. pneumoniae isolates. At least 3 distinct combinations of antimicrobial agents with bactericidal activity were efficient against 21 K. pneumoniae isolates (95.5%). Only 1 bactericidal combination (meropenem–amikacin) was unveiled for one isolate (producer of NDM MBL with MIC of colistin 32 μg/ml). Geksadekon, duacid, oksidez, hlorocid and diajsid exerted a bactericidal effect at 1/4 work dose against all isolates. Duacid, oksidez, hlorocid and diajsid showed bactericidal effect at 1/16 work dose against 95.5–100% isolates. Thus, several decontaminant groups (oxidizing agents, chlorine-containing preparations) were characterized by bactericidal activity against multidrug-resistant and extremely drug-resistant of K. pneumoniae even at 4–16 times lower than recommended concentration.

About the authors

D. V. Tapalski

Gomel State Medical University

Author for correspondence.
Email: tapalskiy@gsmu.by
ORCID iD: 0000-0002-9484-7848

Dmitriy V. Tapalski, PhD (Medicine), Associate Professor, Head of the Department of Microbiology, Virology and Immunology

246050, Gomel, Lange str., 5.

Phone: +375 297 35-42-93. Fax: +375 232 75-31-21.

Belarus

O. I. Savchenko

Gomel Regional Clinical Hospital

Email: tapalskiy@gsmu.by

Neonatologist of the 4th Children’s Department for Premature Children

Gomel 

Belarus

N. A. Bonda

Gomel Regional Center for Hygiene, Epidemiology and Public Health

Email: tapalskiy@gsmu.by

Bacteriologist of the Microbiological Laboratory

Gomel

Belarus

References

  1. Сергевнин В.И., Клюкина Т.В., Волкова Э.О. Приобретенная устойчивость возбудителей внутрибольничных гнойно-септических инфекций к дезинфицирующим средствам и антибиотикам // Здоровье населения и среда обитания. 2013. Т. 244, № 7. С. 35–37.
  2. Соловей Н.В., Карпов И.А., Горбич Ю.Л. Терапия мультирезистентных грамотрицательных инфекций: ренессанс колистина // Клиническая инфектология и паразитология. 2012. T. 1, № 1. С. 12–27.
  3. Способ определения чувствительности бактерий к дезинфицирующим средствам при мониторинге устойчивости к антимикробным препаратам в медицинских организациях: Федеральные клинические рекомендации. М., 2015. 27 с.
  4. Тапальский Д.В. Чувствительность к комбинациям антибиотиков продуцирующих карбапенемазы нозокомиальных штаммов грамотрицательных бактерий, выделенных в Беларуси // Клиническая микробиология и антимикробная химиотерапия. 2018. Т. 20, № 3. С. 182–191.
  5. Тапальский Д.В., Осипов В.А., Евсеенко Е.О., Савельева А.К., Козловская И.В., Козик А.П., Левшина Н.Н., Осипкина О.В., Соловей Н.В., Карпов И.А. Металло-бета-лактамазы и карбапенемазы экстремально-антибиотикорезистентных энтеробактерий: распространение в Беларуси // Здравоохранение. 2017. № 3. С. 40–47.
  6. Шкарин В.В., Саперкин Н.В., Ковалишена О.В., Благонравова А.С., Широкова И.Ю., Кулюкина А.А. Региональный мониторинг устойчивости микроорганизмов к дезинфектантам: итоги и перспективы // Медицинский альманах. 2012. Т. 22, № 3. С. 122–125.
  7. Aaron S.D., Ferris W., Henry D.A., Speert D.P., Macdonald N.E. Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am. J. Respir. Crit. Care Med., 2000, vol. 161, no. 4, pp. 1206–1212. doi: 10.1164/ajrccm.161.4.9907147
  8. Cai Y., Chua N.G., Lim T.P., Teo J.Q., Lee W., Kurup A., Koh T.H., Tan T.T., Kwa A.L. From bench-top to bedside: a prospective in vitro antibiotic combination testing (iACT) service to guide the selection of rationally optimized antimicrobial combinations against extensively drug resistant (XDR) Gram negative bacteria (GNB). PLoS One, 2016, vol. 11, no. 7: e0158740. doi: 10.1371/journal.pone.0158740
  9. Centers for Disease Control and Prevention. Guidance for control of carbapenem-resistant Enterobacteriaceae (CRE). 2012.
  10. Chuanchuen R., Beinlich K., Hoang T.T., Becher A., Karkhoff-Schweizer R.R., Schweizer H.P. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob. Agents Chemother., 2001, vol. 45, no. 2, pp. 428–432. doi: 10.1128/AAC.45.2.428-432.2001
  11. European Committee on Antimicrobial Susceptibility testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Ver. 8.0. 2018.
  12. Guo W., Shan K., Xu B., Li J. Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog. Glob. Health., 2015, vol. 109, no. 4, pp. 184–192. doi: 10.1179/2047773215Y.0000000022
  13. ISO 20776-1:2006 «Clinical laboratory testing and in vitro diagnostic test systems — susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices» — Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases.
  14. Pendleton J.N., Gorman S.P., Gilmore B.F. Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti Infect. Ther., 2013, vol. 11, no. 3, pp. 297–308. doi: 10.1586/eri.13.12
  15. Pitout J.D.D., Nordmann P., Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother., 2015, vol. 59, no. 10, pp. 5873–5884. doi: 10.1128/AAC.01019-15
  16. Reichel M., Schlicht A., Ostermeyer C., Kampf G. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect Dis., 2014, vol. 28, no. 14: 292. doi: 10.1186/1471-2334-14-292
  17. Toth A., Damjanova I., Puskas E., Janvari L., Farkas M., Dobak A., Borocz K., Paszti J. Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur. J. Clin. Microbiol. Infect. Dis., 2010, vol. 29, no. 7, pp. 765–769. doi: 10.1007/s10096-010-0921-3
  18. Vasoo S. Susceptibility testing for the polymyxins: two steps back, three steps forward? J. Clin. Microbiol., 2017, vol. 55, no. 9, pp. 2573–2582. doi: 10.1128/JCM.00888-17
  19. Zavascki A.P., Bulitta J.B., Landersdorfer C.B. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev. Anti. Infect. Ther., 2013, vol. 11, no. 12, pp. 1333–1353. doi: 10.1586/14787210.2013.845523

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Tapalski D.V., Savchenko O.I., Bonda N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies