THE PHENOTYPE AND METABOLISM RELATIONSHIP OF BLOOD NEUTROPHILS IN PATIENTS WITH WIDESPREAD PURULENT PERITONITIS IN THE POSTOPERATIVE PERIOD DYNAMICS

Cover Page


Cite item

Full Text

Abstract

The aim of the study was to examine the relationship of the phenotype and metabolism of neutrophils in patients with widespread purulent peritonitis (WPP) in the dynamics of the postoperative period. The study involved 27 patients with acute surgical diseases and injuries of abdominal organs complicated by WPP. Blood sampling was performed prior to surgery (pre-operative period) and at 7, 14 and 24 day post-operative period. As controls 67 respect healthy people were examined. Research blood neutrophilic granulocytes phenotype was performed by f low cytometry using a direct immunof luorescence whole peripheral blood. The levels of surface receptor expression was assessed by the mean f luorescence intensity. The NADand NADP-dependent dehydrogenases activity in the blood neutrophils studied using bioluminescence method. It was found that in patients with WPP in the preoperative period in the peripheral blood increased content of CD62L+-, HLA-DR+and CD64+-neutrophils. High levels of CD62L+-cells stored within 24 postoperative days, whereas the amount of HLA-DR+and CD64+-neutrophils on 24 postoperative day is reduced to the level of controls. The dynamics of changes in the content of CD64+-cells in the peripheral blood of patients with WPP corresponds to the expression level of CD64-receptor on the membrane of neutrophilic granulocytes. The metabolism of blood neutrophils in patients with WPP in the preand postoperative period is characterized by high intensity of the substrate stream on the citric acid cycle, low activity of NADP-dependent glutamate dehydrogenase and aerobic reaction of lactate dehydrogenase. In the preoperative period and within 14 days of the postoperative period in neutrophil granulocytes of the patients revealed high activity of anaerobic lactate dehydrogenase reaction characterized by increased activity of anaerobic glycolysis. In the late postoperative period the intensity of anaerobic energy in the neutrophils of patients with WPP was reduced to the control level. The final stage of post-operative treatment the metabolism in the blood neutrophils of patients with WPP is also characterized by the activation of the pentose phosphate cycle, low activity of malate-aspartate shunt mitochondria and high intensity of the substrate interaction between citric acid cycle and reactions of amino acid metabolism. Using correlation analysis set dysregulation between phenotype and the system of intracellular metabolism of neutrophils which can be determined by the migration of activated cells in the inf lammatory focus as well as changes in the activity of intracellular enzymes under different regulatory factors and including postoperative therapy methods peritonitis.

About the authors

A. A. Savchenko

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North; Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Laboratory of Molecular-Cell Physiology and Pathology.

Krasnoyarsk

Россия

A. G. Borisov

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North; Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD (Medicine), Leading Researcher, Laboratory of Molecular-Cell Physiology and Pathology.

Krasnoyarsk

Россия

I. V. Kudryavcev

Research Institute of Experimental Medicine; Far Eastern Federal University; Pavlov First St. Petersburg State Medical University

Author for correspondence.
Email: igorek1981@yandex.ru

Igor V. Kudryavtsev  - PhD (Biology), Senior Researcher, Laboratory of Immunology IEM; Senior Researcher, Department of Fundamental Medicine FEFU; Associate Professor, Department of Immunology, Pavlov First St. PSMU.

197376, St. Petersburg, Akademika Pavlova str., 12, Phone: +7 (812) 234-29-29

Россия

I. I. Gvozdev

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: fake@neicon.ru

Junior Researcher, Laboratory of Cellular and Molecular Physiology and Pathology.

Krasnoyarsk

Россия

A. V. Moshev

Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North

Email: fake@neicon.ru

Junior Researcher, Laboratory of Cellular and Molecular Physiology and Pathology.

Krasnoyarsk 

Россия

D. V. Cherdancev

Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD, MD (Medicine), Professor, Head of the Department and Clinic of Surgical Diseases named after prof. A.M. Dykhno with a Course of Endoscopy and Endosurgery

Россия

O. V. Pervova

Krasnoyarsk State Medical University named after prof. V.F. Voino-Yasenetsky

Email: fake@neicon.ru

PhD, MD (Medicine), Professor of the Department and Clinic of Surgical Diseases named after prof. A.M. Dykhno with a Course of Endoscopy and Endosurgery

Россия

References

  1. Кнорре Д.Г., Мызина С.Д. Биологическая химия. Новосибирск: Изд-во СО РАН. 2012. 456 с. [Knorre D.G., Myzina S.D. Biologicheskaya khimiya [Biological chemistry]. Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2012. 456 p.]
  2. Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шестицветного цитофлуоримерического анализа // Медицинская иммунология. 2015. Т. 17, № 1. С. 19–26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color f low cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 1, pp. 19–26. doi: 10.15789/1563-0625-2015-1-19-26 (In Russ).]
  3. Савченко А.А. Определение активности NAD(P)-зависимых дегидрогеназ в нейтрофильных гранулоцитах биолюминесцентным методом // Бюллетень экспериментальной биологии и медицины. 2015. Т. 159, № 5. С. 656–660. [Savchenko A.A. Evaluation of NAD(P)-dependent dehydrogenase activities in neutrophilic granulocytes by the bioluminescent method. Byulleten’ eksperimental’noi biologii i meditsiny = Bulletin of Experimental Biology and Medicine, vol. 159, no. 5, pp. 656–660. doi: 10.1007/s10517-015-3049-8 (In Russ).]
  4. Савченко А.А., Здзитовецкий Д.Э., Борисов А.Г. Иммунометаболические нарушения при распространенном гнойном перитоните. Новосибирск: Наука, 2013. 142 с. [Savchenko A.A., Zdzitoveckij D.Je., Borisov A.G. Immunometabolicheskie narusheniya pri rasprostranennom gnoinom peritonite [Immune and metabolic disorders by the widespread purulent peritonitis]. Novosibirsk: Nauka, 2013. 142 p.]
  5. Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 с. [Yarilin A.A. Immunologiya [Immunology]. Moscow: GEOTAR-Media, 2010, 752 p.]
  6. Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys., 2014, vol. 68, no. 3, pp. 475–478. doi: 10.1007/s12013-013-9750-1
  7. Azevedo E.P., Rochael N.C., Guimarães-Costa A.B., De Souza-Vieira T.S., Ganilho J., Saraiva E.M., Palhano F.L., Foguel D. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibriland phorbol 12-myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J. Biol. Chem., 2015, vol. 290, no. 36, pp. 22174–22183. doi: 10.1074/jbc.M115.640094
  8. Boer K., Vogelsang H., Deufel T., Pfister W., Kiehntopf M. CD62L on neutrophil granulocytes, a useful, complementary marker for the prediction of ventriculitis in blood-containing CSF. Clin. Biochem., 2010, vol. 43, no. 16–17, pp. 1351–1355. doi: 10.1016/j.clinbiochem.2010.07.003
  9. Couto N., Wood J., Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med., 2016, vol. 95, pp. 27–42. doi: 10.1016/j.freeradbiomed.2016.02.028
  10. Dang Y., Lou J., Yan Y., Yu Y., Chen M, Sun G, Li N. The role of the neutrophil Fcγ receptor I (CD64) index in diagnosing spontaneous bacterial peritonitis in cirrhotic patients. Int. J. Infect. Dis., 2016. vol. 49, pp. 154–160. doi: 10.1016/j.ijid.2016.06.021
  11. De Jong E., De Lange D.W., Beishuizen A., Van de Ven P.M., Girbes A.R., Huisman A. Neutrophil CD64 expression as a longitudinal biomarker for severe disease and acute infection in critically ill patients. Int. J. Lab. Hematol., 2016, vol. 38, no. 5, pp. 576–584. doi: 10.1111/ijlh.12545
  12. Deng X., Deng T., Ni Y., Zhan Y., Huang W., Liu J., Liao C. Cytochrome c modulates the mitochondrial signaling pathway and polymorphonuclear neutrophil apoptosis in bile duct-ligated rats. Exp. Ther. Med., 2016, vol. 12, no. 1, pp. 333–342. doi: 10.3892/etm.2016.3313
  13. Genel F., Atlihan F., Gulez N., Kazanci E., Vergin C., Terek D.T., Yurdun O.C. Evaluation of adhesion molecules CD64, CD11b and CD62L in neutrophils and monocytes of peripheral blood for early diagnosis of neonatal infection. World J. Pediatr., 2012, vol. 8, no. 1, pp. 72–75. doi: 10.1007/s12519011-0304-6
  14. Lavoie-Lamoureux A., Moran K., Beauchamp G., Mauel S., Steinbach F., Lefebvre-Lavoie J., Martin J.G., Lavoie J.P. IL-4 activates equine neutrophils and induces a mixed inf lammatory cytokine expression profile with enhanced neutrophil chemotactic mediator release ex vivo. Am. J. Physiol. Lung Cell Mol. Physiol., 2010, vol. 299, no. 4, pp. L472–L482. doi: 10.1152/ajplung.00135.2009
  15. Macedo L.W., Cararo J.H., Maravai S.G., Gonçalves C.L., Oliveira G.M., Kist L.W., Guerra Martinez C., Kurtenbach E., Bogo M.R., Hipkiss A.R., Streck E.L., Schuck P.F., Ferreira G.C. Acute carnosine administration increases respiratory chain complexes and citric acid cycle enzyme activities in cerebral cortex of young rats. Mol. Neurobiol., 2016, vol. 53, no. 8, pp. 5582–5590. doi: 10.1007/s12035-015-9475-9
  16. Maecker H., McCoy P., Nussenblatt R. Standardizing immunophenotyping for the human immunology project. Nat. Rev. Immunol., 2012, vol. 12, pp. 191–200. doi: 10.1038/nri3158
  17. Mastej K., Adamiec R. Neutrophil surface expression of CD11b and CD62L in diabetic microangiopathy. Acta Diabetol., 2008, vol. 45, no. 3, pp. 183–190. doi: 10.1007/s00592-008 -0040-0
  18. Peters B.M., Noverr M.C. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect. Immun., 2013, vol. 81, no. 6, pp. 2178–2189. doi: 10.1128/IAI.00265-13
  19. Pliyev B.K., Sumarokov A.B., Buriachkovskaia L.I., Menshikov M. Extracellular acidosis promotes neutrophil transdifferentiation to MHC class II-expressing cells. Cell Immunol., 2011, vol. 271, no. 2, pp. 214–218. doi: 10.1016/j.cellimm.2011.08.020
  20. Qian W., Huang G.Z. Neutrophil CD64 as a marker of bacterial infection in acute exacerbations of chronic obstructive pulmonary disease. Immunol. Invest., 2016, vol. 45, no. 6, pp. 490 –503. doi: 10.1080/08820139.2016.1177540.
  21. Rodríguez-Espinosa O., Rojas-Espinosa O., Moreno-Altamirano M.M., López-Villegas E.O., Sánchez-García F.J. Metabolic requirements for neutrophil extracellular traps formation. Immunology, 2015, vol. 145, no. 2, pp. 213–224. doi: 10.1111/imm.12437
  22. Sato T., Yoshida Y., Morita A., Mori N., Miura S. Glycerol-3-phosphate dehydrogenase 1 deficiency induces compensatory amino acid metabolism during fasting in mice. Metabolism, 2016, vol. 65, no. 11, pp. 1646–1656. doi: 10.1016/j.metabol.2016.08.005
  23. Schuster D.P., Brody S.L., Zhou Z., Bernstein M., Arch R., Link D., Mueckler M. Regulation of lipopolysaccharide-induced increases in neutrophil glucose uptake. Am. J. Physiol. Lung Cell Mol. Physiol., 2007, vol. 292, no. 4, pp. L845–L851. doi: 10.1152/ajplung.00350.2006
  24. Shashidharan P., Plaitakis A. The discovery of human of GLUD2 glutamate dehydrogenase and its implications for cell function in health and disease. Neurochem. Res., 2014, vol. 39, no. 3, pp. 460 –470. doi: 10.1007/s11064-013-1227-5
  25. Sutton B.J., Davies A.M. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol. Rev., 2015, vol. 268, no. 1, pp. 222–235. doi: 10.1111/imr.12340
  26. Van der Meer W., Stephen Scott C., Verlaat C., Gunnewiek J.K., Warris A. Measurement of neutrophil membrane CD64 and HLA-DR in a patient with abdominal sepsis. J. Infect., 2006, vol. 53, no. 1, pp. e43–e46. doi: 10.1016/j.jinf.2005.09.003
  27. Ventura I., Vega A., Chacón P., Chamorro C., Aroca R., Gómez E., Bellido V., Puente Y., Blanca M., Monteseirín J. Neutrophils from allergic asthmatic patients produce and release metalloproteinase-9 upon direct exposure to allergens. Allergy, 2014, vol. 69, no. 7, pp. 898–905. doi: 10.1111/all.12414
  28. Verschoor C.P., Loukov D., Naidoo A., Puchta A., Johnstone J., Millar J., Lelic A., Novakowski K.E., Dorrington M.G., Loeb M., Bramson J.L., Bowdish D.M. Circulating TNF and mitochondrial DNA are major determinants of neutrophil phenotype in the advanced-age, frail elderly. Mol. Immunol., 2015, vol. 65, no. 1, pp. 148–156. doi: 10.1016/j.molimm.2015.01.015
  29. Walmsley S.R., Whyte M.K. Neutrophil energetics and oxygen sensing. Blood, vol. 123, no. 18, pp. 2753–2754. doi: 10.1182/blood-2014-03-560409

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Savchenko A.A., Borisov A.G., Kudryavcev I.V., Gvozdev I.I., Moshev A.V., Cherdancev D.V., Pervova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies