HUMAN PAPILLOMA VIRUS IMMUNOGEN CREATION ON THE BASE OF CHIMERIC RECOMBINANT PROTEIN L2E7

Cover Page


Cite item

Full Text

Abstract

The cervical cancer is one of the most common diseases in world. This malignancy is the seventh highest prevalence oncological disease worldwide and the second highest prevalence oncological disease of women in the world. Meanwhile women need to be infected by human papilloma virus (HPV) is absolutely necessary for it further evolution, HPV DNA was found in 99.97% cases of disease. Except cervical cancer, HPV cause 85% of rectal cancer, 50% of the vulva, vagina and penis cancers, 20% of oropharyngeal cancer and 10% of larynx and esophagus cancers. In 2009, 14 000 women were diagnosed with cervical cancer in Russia. The growth in morbidity was 19% (in comparison with 1999). The most effective recognised measure for almost each infection prophylaxis is a vaccination. Two human papilloma virus vaccines are available in Russia nowadays — Gardasil and Cervarix, produced in Belgium and the Netherlands respectively. Cervarix is a bivalent vaccine based on virus-like particles (VLP) of two types. Recombinant major capsid proteins L1 HPV 16 and HPV 18 express in baculovirus expression system and self-assembled into virus-like particles (about 70 percent of cervical cancers are caused by HPV 16 and HPV 18). VLP of each strain produced in different baculovirus vectors and then combined in single drug. Gardasil is like Cervarix with few exceptions. Producing organisms are fungi S. cerevisiae in this case, and this vaccine contains low-risk HPV 6 and HPV 11 VLP. Thus, Gardasil is quadrivalent HPV-6/11/16/18 vaccine. These vaccines are very effective in averting infection of disease and don’t have significant side-effects, however they have some disadvantages. Firstly, they have a high price because of necessity of their expression in eukaryotic cells. Secondly, they are strain-specific, so vaccines are completely effective only for virus’s strains which are represented in the vaccine. Thirdly, it`s the absence of therapeutic (treatment of established infection) value of stated vaccines. According to information from literature, N-terminus of the L2 protein can induce non strain-specific neutralizing antibody that protects organism from papillomavirus challenge. E7 protein is a virus oncogene, its function is unlimited proliferation of infected cells that cause malignization in chronic course of disease. This protein is a very attractive target for therapeutic vaccines because of its necessity both for virus life cycle and sustenance of malignant phenotype in cancer cells. So, in this research the design of immunogen on the base of proteins HPV L2 and E7 is selected, vaccine on the base of which will avoid the disadvantages of Gardasil and Cervarix listed above. The stain-producer of protein on the base of cells E. coli was created. The protein was purified in denaturing reducing conditions by metal-affine chromatography and refold by sequential remove of urea and 2-mercaptoethanol.

About the authors

I. S. Malakhov

Institute of Highly Pure Biopreparations, St. Petersburg, Russia

Author for correspondence.
Email: ipatyi.malakhov@yahoo.com

Master (Biology), Engineer, Genetic Engineering Vaccine Laboratory

Россия

R. I. Al-Shehadat

Institute of Highly Pure Biopreparations, St. Petersburg, Russia

Email: ipatyi.malakhov@yahoo.com

PhD (Biology), Deputy of Head of the Genetic Engineering Vaccine Laboratory

Россия

I. V. Duckhovlinov

Institute of Highly Pure Biopreparations, St. Petersburg, Russia

Email: ipatyi.malakhov@yahoo.com

PhD (Biology), Head of the Genetic Engineering Vaccine Laboratory, State Research Institute of Highly Pure Biopreparations

Россия

A. S. Simbirtsev

Institute of Highly Pure Biopreparations, St. Petersburg, Russia

Email: ipatyi.malakhov@yahoo.com

RAS Corresponding Member, PhD, MD (Biology), Professor, Director of State Research Institute of Highly Pure Biopreparations

Россия

References

  1. Ярилин А.А. Иммунология. ГЭОТАР Медиа, 2010. 752 с. [Yarilin A.A. Immunologiya [Immunology]. Мoscow: GEOTAR-Media, 2010, 752 p.]
  2. Anfinsen C.B., Haber E., Sela M., White F.H. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA, 1961, vol. 47, no. 9, p. 1309. doi: 10.1073/pnas.47.9.1309
  3. Baseman J.G., Koutsky L.A. The epidemiology of human papillomavirus infections. J. Clin. Virol., 2005, vol. 32, pp. 16–24. doi: 10.1016/j.jcv.2004.12.008
  4. Bosch F.X., De Sanjosé S. Human papillomavirus and cervical cancer — burden and assessment of causality. J. Natl. Cancer Inst., 2003, vol. 2003, no. 31, pp. 3–13. doi: 10.1093/oxfordjournals.jncimonographs.a003479
  5. Bzhalava D., Eklund C., Dillner J. International standardization and classification of human papillomavirus types. Virology, 2015, vol. 476, pp. 341–344. doi: 10.1016/j.virol.2014.12.028
  6. Campo M.S., Grindlay G.J., O’Neil B.W., Chandrachud L.M., McGarvie G.M., Jarrett W.F. Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J. Gen. Virol., 1993, vol. 74, pp. 945–953. doi: 10.1099/0022-1317-74-6-945
  7. Campos S.K., Ozbun M.A. Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One, 2009, vol. 4, no. 2, e4463. doi: 10.1371/journal.pone.0004463
  8. Christensen N.D., Cladel N.M., Reed C.A., Budgeon L.R., Embers M.E., Skulsky D.M., McClements W.L., Ludmerer S.W., Jansen K.U. Hybrid papillomavirus L1 molecules assemble into virus-like particles that reconstitute conformational epitopes and induce neutralizing antibodies to distinct HPV types. Virology, 2001, vol. 291, no. 2, pp. 324–334. doi: 10.1006/viro.2001.1220
  9. Creighton T.E. Kinetic study of protein unfolding and refolding using urea gradient electrophoresis. J. Mol. Biol., 1980, vol. 137, no. 1. pp. 61–80. doi: 10.1016/0022-2836(80)90157-6
  10. Daayana S., Elkord E., Winters U., Pawlita M., Roden R., Stern P.L., Kitchener H.C. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer, 2010, vol. 102, no. 7, pp. 1129–1136. doi: 10.1038/ sj.bjc.6605611
  11. Demurtas O.C., Massa S., Ferrante P., Venuti A., Franconi R., Giuliano G.A. Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One, 2013, vol. 8, no. 4, pp. E61473. doi: 10.1371/journal.pone.0061473
  12. Fang-Cheng Z., Gang C., Jie W., Su-Feng J., Yun-Shui J., Men G., Jian-Buo L., Li Z., Zian M., Houwen T. Evaluation of pre-clinical efficacy to HPV16 L2E6E7 vaccine and HPV16 E6E7 adenovirus-5 vector vaccine with different dosages and prime-booster regiments in mouse model. J. Vaccines Vaccin., 2013, vol. 4, pp. 1–4. doi: 10.4172/2157-7560.1000189
  13. Frazer I.H. Prevention of cervical cancer through papillomavirus vaccination. Nat. Rev. Immunol., 2004, vol. 4, no. 1, pp. 46–55. doi: 10.1038/nri1260
  14. Gambhira R., Karanam B., Jagu S., Roberts J.N., Buck C.B., Bossis I., Alphs H., Culp T., Neil D., Christensen N.D., Roden R.B. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J. Virol., 2007, vol. 81, no. 24, pp. 13927–13931. doi: 10.1128/JVI.00936-07
  15. Gambhira R., Jagu S., Karanam B., Gravitt P.E., Culp T.D., Christensen N.D., Roden R.B. Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. J. Virol., 2007, vol. 81, no. 21, pp. 11585–11592. doi: 10.1128/JVI.01577-07
  16. Govan V.A. A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil®). Ther. Clin. Risk Manag., 2008, vol. 4, no. 1, p. 65. doi: 10.2147/TCRM.S856
  17. Heck D.V., Yee C.L., Howley P.M., Münger K. Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, no. 10, pp. 4442–4446. doi: 10.1073/pnas.89.10.4442
  18. International Agency for Research on Cancer, IARC Working group on the evaluation of carcinogenic risks to humans. IARC monographs on the evaluation of carcinogenic risks to humans. IARC, 2012, vol. 100B. doi: 10.1016/s0378-8741(03)00216-2
  19. Invitrogen. Ni-NTA purification system. User manual. Catalog nos. K950-01, K951-01, K952-01, K953-01, K954-01, R901-01, R901-10, R 901-15. Version C. 25-0496, 2006, 32 p.
  20. Jagu S., Karanam B., Gambhira R., Chivukula S.V., Chaganti R.J., Lowy D.R., Schiller J.T., Roden R.B. Concatenated multi-type L2 fusion proteins as candidate prophylactic panhuman papillomavirus vaccines. J. Natl. Cancer Inst., 2009, vol. 101, no. 11, pp. 782–792. doi: 10.1093/jnci/djp106
  21. Jagu S., Kwak K., Karanam B., Huh W. K., Damotharan V., Chivukula S.V., Roden R.B. Optimization of multimeric human papillomavirus L2 vaccines. PLoS One, 2013, vol. 8, no. 1, e55538. doi: 10.1371/journal.pone.0055538
  22. Jagu S., Kwak K., Garcea R.L., Roden R.B. Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection. Vaccine, 2010, vol. 28, no. 28, pp. 4478–4486. doi: 10.1016/j.vaccine.2010.04.039
  23. Jarrett W.F., O’Neil B.W., Gaukroger J.M., Smith K.T., Laird H.M., Campo M.S. Studies on vaccination against papillomaviruses: the immunity after infection and vaccination with bovine papillomaviruses of different types. Vet. Rec., 1990, vol. 126, no. 19, pp. 473–475. doi: 10.1136/vr.126.19.473
  24. Kalnin K., Tibbitts T., Yan Y., Stegalkina S., Shen L., Costa V., Sabharwal R., Anderson S.F., Day P.M., Christensen N., Schiller J.T., Jagu S., Roden R.B., Almond J., Kleanthous H. Low doses of flagellin-L2 multimer vaccines protect against challenge with diverse papillomavirus genotypes. Vaccine, 2014, vol. 32, no. 28, pp. 3540–3547. doi: 10.1016/j.vaccine.2014.04.032
  25. Karanam B., Gambhira R., Peng S., Jagu S., Kim D.J., Ketner G.W., Stern P.L., Adams R.J., Roden R.B. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine, 2009, vol. 27, no. 7, pp. 1040–1049. doi: 10.1016/j.vaccine.2008.11.099
  26. Kawana K., Adachi K., Kojima S., Taguchi A., Tomio K., Yamashita A., Nishida H., Nagasaka K., Arimoto T., Yokoyama T., Wada-Hiraike O., Oda K., Sewaki T., Osuga Y., Fujii, T. Oral vaccination against HPV E7 for treatment of cervical intraepithelial neoplasia grade 3 (CIN3) elicits E7-specific mucosal immunity in the cervix of CIN3 patients. Vaccine, 2014, vol. 32, no. 47, pp. 6233–6239. doi: 10.1016/j.vaccine.2014.09.020
  27. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, vol. 227, pp. 680–685. doi: 10.1016/0022-2836(73)90198-8
  28. Malagón T., Drolet M., Boily M.C., Franco E. L., Jit M., Brisson J., Brisson M. Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect. Dis., 2012, vol. 12, no. 10, pp. 781–789. doi: 10.1016/ S1473-3099(12)70187-1
  29. Monie A., Hung C.F., Roden R., Wu T.C. Cervarix™: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics., 2008, vol. 2, no. 1, pp. 107. doi: 10.2147/BTT.S1877
  30. Ohlenschläger O., Seiboth T., Zengerling H., Briese L., Marchanka A., Ramachandran R., Baum M., Korbas M., Meyer-Klaucke W., Dürst M., Görlach M. Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene, 2006, vol. 25, no. 44, pp. 5953–5959. doi: 10.1038/sj.onc.1209584
  31. Pastrana D.V., Buck C.B., Pang Y.S., Thompson C.D., Castle P.E., Fitzgerald P.C., Kjaerd S.K., Lowyand D.R., Schiller J.T. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology, 2004, vol. 321, no. 2, pp. 205–216. doi: 10.1016/j.virol.2003.12.027
  32. QIAGEN. Compatibility of reagents with Ni-NTA. QIAGEN, 2006.
  33. Roden R.B., Yutzy W.H., Fallon R., Inglis S., Lowy D.R., Schiller J.T. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology, 2000, vol. 270, no. 2, pp. 254–257. doi: 10.1006/viro.2000.0272
  34. Rogovskaya S.I., Shabalova I.P., Mikheeva I.V., Minkina G.N., Podzolkova N.M., Shipulina O.Y., Sultanov S.N., Kosenko I.A., Brotons M., Buttmann N., Dartell M., Arbyn M., Syrjänen S., Poljak M. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Russian Federation, the Western Countries of the former Soviet Union, Caucasus Region and Central Asia. Vaccine, 2013, vol. 31, pp. H46–H58. doi: 10.1016/j.vaccine.2013.06.043
  35. Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, vol. 5, no. 4, pp. 725–738. doi: 10.1038/nprot.2010.5
  36. Schiller J.T., Castellsagué X., Villa L.L., Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine, 2008, vol. 26, pp. K53–K61. doi: 10.1016/j.vaccine.2008.06.002
  37. Studier F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif., 2005, vol. 41, no. 1, pp. 207–234. doi: 10.1016/j.pep.2005.01.016
  38. Thompson H.S.G., Davies M.L., Watts M.J., Mann A.E., Holding F.P., O’Neill T., Beech J.T., Thompson S.J., Leesman G.D., Ulrich J.T. Enhanced immunogenicity of a recombinant genital warts vaccine adjuvanted with monophosphoryl lipid A. Vaccine, 1998, vol. 16, no. 20, pp. 1993–1999. doi: 10.1016/S0264-410X(98)00088-7
  39. Tsumoto K., Ejima D., Kumagai I., Arakawa T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif., 2003, vol. 28, no. 1, pp. 1–8. doi: 10.1016/S1046-5928(02)00641-1
  40. Van Doorslaer K., Reimers L.L., Studentsov Y.Y., Einstein M.H., Burk R.D. Serological response to an HPV16 E7 based therapeutic vaccine in women with high-grade cervical dysplasia. Gynecol. Oncol., 2010, vol. 116, no. 2, pp. 208–212. doi: 10.1016/j.ygyno.2009.05.044
  41. Wick D.A., Webb J.R. A novel, broad spectrum therapeutic HPV vaccine targeting the E7 proteins of HPV16, 18, 31, 45 and 52 that elicits potent E7-specific CD8T cell immunity and regression of large, established, E7-expressing TC-1 tumors. Vaccine, 2011, vol. 29, no. 44, pp. 7857–7866. doi: 10.1016/j.vaccine.2011.07.090
  42. Xiong A.S., Yao Q.H., Peng R.H., Li X., Fan H.Q., Cheng Z.M., Li Y. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res., 2004, vol. 32, no. 12, pp. e98–e98. doi: 10.1093/nar/ gnh094
  43. Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 2015, vol. 12, no. 1, pp. 7–8. doi: 10.1038/nmeth.3213
  44. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC bioinformatics, 2008, vol. 9, no. 1, p. 40. doi: 10.1186/1471-2105-9-40

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Malakhov I.S., Al-Shehadat R.I., Duckhovlinov I.V., Simbirtsev A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 64788 от 02.02.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies