Cite item


Abstract. Acute respiratory viral infections are distributed across the globe and are the most numerous human diseases caused by several hundreds of diverse viruses. Human rhinovirus is one of the most common respiratory pathogens worldwide, causing more than half of all acute respiratory viral infection cases. Seasonal human coronaviruses account for 10–15% of common cold cases; respiratory syncytial (RS) virus is the most common cause of respiratory hospitalization in infants; influenza viruses, adenoviruses, human parainfluenza virus, metapneumoviruses, and some other pathogens are also widespread. It is believed that viral common colds are mostly self–limited, causing mild infections that usually resolve within 8–10 days. However, the role of common seasonal respiratory viruses in total respiratory morbidity should not be underestimated. It turned out that during extraordinary conditions of pandemics, they behave differently. This was clearly demonstrated in the last 2009 influenza pandemic. Whereas some viruses lost relevance under the burden of a new aggressive pandemic strain, others, e.g., rhinovirus, continued to fight for existence and not only circulated along with the pandemic pathogen, but delayed its spread in some cases. For instance, the data from some European countries pointed out that the circulation of the H1N1pdm09 influenza A pandemic virus was interrupted by the annual rhinovirus outbreak. Ten years after the H1N1pdm09 influenza pandemic, a new virus outbreak emerged – the COVID–19 pandemic has begun. This pandemic, caused by the SARS–CoV–2 virus, has disrupted well–established pathogenetic and epidemiological relationships. The level of circulation of many respiratory pathogens has changed dramatically. For instance, global influenza activity has been at a much lower level than expected for the second year from now. In many regions of the world, the flu season has not been started yet. But what is interesting is that rhinoviruses together with RS–virus again showed their unique ability to compete with highly pathogenic and aggressive pathogens. Along with profoundly reduced circulation of many other seasonal respiratory viruses, rhinovirus, and RS–virus are the most frequently detected viruses. In this review, we have brought together the main biological characteristics of such genetically distinct viruses such as rhinovirus, influenza A virus, RS–virus, and SARS–CoV–2. We focused on their main similarities and discrepancies in the attempt to understand why they behave so differently in extreme pandemic conditions as well as what allows rhinoviruses and RS–viruses to coexist with SARS–CoV–2, which in turn almost fully replaced the influenza virus.

About the authors

I. V. Kiseleva

Institute of Experimental Medicine, Saint Petersburg, Russia
bSaint Petersburg University, St. Petersburg

Author for correspondence.
Email: irina.v.kiseleva@mail.ru
ORCID iD: 0000-0002-3892-9873

Ph.D., D.Sci., Professor, Head of the Laboratory, Institute of Experimental Medicine

Russian Federation

A. D. Ksenafontov

Smorodintsev Research Institute of Influenza, Saint Petersburg, Russia

Email: ksenandrey@yandex.ru
ORCID iD: 0000-0002-4532-6210

Ph.D. Student, Smorodintsev Research Institute of Influenza

Russian Federation


  1. Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis., 2021, 68, 296-312, doi: 10.1111/tbed.13707.
  2. Anderson, R.M.; Fraser, C.; Ghani, A.C.; Donnelly, C.A.; Riley, S.; Ferguson, N.M.; Leung, G.M.; Lam, T.H.; Hedley, A.J. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos. Tran.s R. Soc. Lond. B. Biol. Sci., 2004, 29:359, 1091-1105, doi: 10.1098/rstb.2004.1490.
  3. Ånestad, G.; Nordbø, S.A. [Does rhinovirus inhibit influenza A(H1N1) pandemic?]. Tidsskr. Nor. Laegeforen., 2010, 130, 1932-1934, doi: 10.4045/tidsskr.10.0660.
  4. Ånestad, G.; Nordbø, S.A. Virus interference. Did rhinoviruses activity hamper the progress of the 2009 influenza A (H1N1) pandemic in Norway? Med.Hypotheses, 2011, 77, 1132-1134, doi: 10.1016/j.mehy.2011.09.021.
  5. Arden, K.E.; Mackay, I.M. Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev. Med. Virol., 2010, 20, 156-176, doi: 10.1002/rmv.644.
  6. Barreto-Vieira, D.F.; da Silva, M.A.N.; Garcia, C.C.; Miranda, M.D.; Matos, A.D.R.; Caetano, B.C.; Resende, P.C.; Motta, F.C.; Siqueira, M.M.; Girard-Dias, W., et al. Morphology and morphogenesis of SARS-CoV-2 in Vero-E6 cells. Mem. Inst. Oswaldo.Cruz., 2021, 116, e200443, doi: 10.1590/0074-02760200443.
  7. Beeching, N.J.; Fletcher, T.E.; Beadsworth, M.B.J. COVID-19: Testing times. BMJ,2020, 369, m1403, doi: 10.1136/bmj.m1403.
  8. Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med.,2020, 383, 2451-2460, doi: 10.1056/NEJMcp2009575.
  9. Breen, M.; Nogales, A.; Baker, S.F.; Martínez-Sobrido, L. Replication-competent influenza A viruses expressing reporter genes. Viruses, 2016, 8, doi: 10.3390/v8070179.
  10. Calderaro, A.; De Conto, F.; Buttrini, M.; Piccolo, G.; Montecchini, S.; Maccari, C.; Martinelli, M.; Di Maio, A.; Ferraglia, F.; Pinardi, F., et al. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019-2020 in Parma, Northern Italy. Int. J. Infect. Dis.,2021, 102, 79-84, doi: 10.1016/j.ijid.2020.09.1473.
  11. Carod-Artal, F.J. Neurological complications of coronavirus and COVID-19. Rev. Neurol., 2020, 70, 311-322, doi: 10.33588/rn.7009.2020179.
  12. Casalegno, J.S.; Ottmann, M.; Bouscambert-Duchamp, M.; Valette, M.; Morfin, F.; Lina, B. Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal respiratory virus epidemics, France, 2009. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2010, 15.
  13. Casalegno, J.S.; Ottmann, M.; Duchamp, M.B.; Escuret, V.; Billaud, G.; Frobert, E.; Morfin, F.; Lina, B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect., 2010, 16, 326-329, doi: 10.1111/j.1469-0691.2010.03167.x.
  14. Charles, C.H.; Yelmene, M.; Luo, G.X. Recent advances in rhinovirus therapeutics. Curr. Drug Targets Infect.Disord., 2004, 4, 331-337, doi: 10.2174/1568005043340551.
  15. Cheung, T.K.; Poon, L.L. Biology of influenza a virus. Ann. N. Y. Acad. Sci., 2007, 1102, 1-25, doi: 10.1196/annals.1408.001.
  16. Cimolai, N. Complicating infections associated with common endemic human respiratory coronaviruses. Health secur., 2021, 19, 195-208, doi: 10.1089/hs.2020.0067.
  17. Collins, P.L.; Fearns, R.; Graham, B.S. Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease. Curr Top Microbiol Immunol.2013, 372, 3-38, doi: 10.1007/978-3-642-38919-1_1.
  18. Cowton, V.M.; McGivern, D.R.; Fearns, R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol.2006, 87, 1805-1821, doi: 10.1099/vir.0.81786-0.
  19. De Vlugt, C.; Sikora, D.; Pelchat, M. Insight into influenza: A virus cap-snatching. Viruses 2018, 10, doi: 10.3390/v10110641.
  20. Dee, K.; Goldfarb, D.M.; Haney, J.; Amat, J.A.R.; Herder, V.; Stewart, M.; Szemiel, A.M.; Baguelin, M.; Murcia, P.R. Human rhinovirus infection blocks SARS-CoV-2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. J Infect Dis 2021, 224, 31-38, doi: 10.1093/infdis/jiab147.
  21. Dehbandi, R.; Zazouli, M.A. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e145, doi: 10.1016/s2666-5247(20)30093-8.
  22. Dou, D.; Revol, R.; Östbye, H.; Wang, H.; Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol 2018, 9, 1581, doi: 10.3389/fimmu.2018.01581.
  23. Dreschers, S.; Dumitru, C.A.; Adams, C.; Gulbins, E. The cold case: Are rhinoviruses perfectly adapted pathogens? Cell Mol Life Sci 2007, 64, 181-191, doi: 10.1007/s00018-006-6266-5.
  24. Drysdale, S.B.; Mejias, A.; Ramilo, O. Rhinovirus - not just the common cold. J. Infect., 2017, 74 Suppl 1, S41-s46, doi: 10.1016/s0163-4453(17)30190-1.
  25. Eccles, R. Understanding the symptoms of the common cold and influenza. Lancet Infect.Dis., 2005, 5, 718-725, doi: 10.1016/s1473-3099(05)70270-x.
  26. Eslami, H.; Jalili, M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express 2020, 10, 92, doi: 10.1186/s13568-020-01028-0.
  27. Fendrick, A.M.; Monto, A.S.; Nightengale, B.; Sarnes, M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 2003, 163, 487-494, doi: 10.1001/archinte.163.4.487.
  28. Firquet, S.; Beaujard, S.; Lobert, P.E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ 2015, 30, 140-144, doi: 10.1264/jsme2.ME14145.
  29. Geller, C.; Varbanov, M.; Duval, R.E. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 2012, 4, 3044-3068, doi: 10.3390/v4113044.
  30. Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, D.W., et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat.Microbiol.,2020, 5, 536-544, doi: 10.1038/s41564-020-0695-z.
  31. Hall, C.B.; Walsh, E.E.; Schnabel, K.C.; Long, C.E.; McConnochie, K.M.; Hildreth, S.W.; Anderson, L.J. Occurrence of groups A and B of respiratory syncytial virus over 15 years: associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. J.Infect. Dis.,1990, 162, 1283-1290, doi: 10.1093/infdis/162.6.1283.
  32. Hanff, T.C.; Mohareb, A.M.; Giri, J.; Cohen, J.B.; Chirinos, J.A. Thrombosis in COVID-19. Am. J. Hematol.,2020, 95, 1578-1589, doi: 10.1002/ajh.25982.
  33. Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol., 2020, 41, 1100-1115, doi: 10.1016/j.it.2020.10.004.
  34. Hasöksüz, M.; Kiliç, S.; Saraç, F. Coronaviruses and SARS-COV-2. Turk. J. Med. Sci.,2020, 50, 549-556, doi: 10.3906/sag-2004-127.
  35. Hemalatha, M.; Kiran, U.; Kuncha, S.K.; Kopperi, H.; Gokulan, C.G.; Mohan, S.V.; Mishra, R.K. Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: Comprehensive study. Sci. Total Environ., 2021, 768, 144704, doi: 10.1016/j.scitotenv.2020.144704.
  36. Hendley, J.O.; Wenzel, R.P.; Gwaltney, J.M., Jr. Transmission of rhinovirus colds by self-inoculation. N. Engl. J. Med.,1973, 288, 1361-1364, doi: 10.1056/nejm197306282882601.
  37. Henwood, A.F. Coronavirus disinfection in histopathology. J Histotechnol 2020, 43, 102-104, doi: 10.1080/01478885.2020.1734718.
  38. Hirose, R.; Ikegaya, H.; Naito, Y.; Watanabe, N.; Yoshida, T.; Bandou, R.; Daidoji, T.; Itoh, Y.; Nakaya, T. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin. Infect. Dis., 2020, 10.1093/cid/ciaa1517, doi: 10.1093/cid/ciaa1517.
  39. Hirsh, S.; Hindiyeh, M.; Kolet, L.; Regev, L.; Sherbany, H.; Yaary, K.; Mendelson, E.; Mandelboim, M. Epidemiological changes of respiratory syncytial virus (RSV) infections in Israel. PloS ONE,2014, 9, e90515, doi: 10.1371/journal.pone.0090515.
  40. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181, 271-280.e278, doi: 10.1016/j.cell.2020.02.052.
  41. Hrebík, D.; Füzik, T.; Gondová, M.; Šmerdová, L.; Adamopoulos, A.; Šedo, O.; Zdráhal, Z.; Plevka, P. ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating. Proc. Natl. Acad. Sci. U. S. A.,2021, 118, doi: 10.1073/pnas.2024251118.
  42. Hui, D.S.; E, I.A.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; McHugh, T.D.; Memish, Z.A.; Drosten, C., et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266, doi: 10.1016/j.ijid.2020.01.009.
  43. ICTV. Virus taxonomy. Classification and nomenclature of viruses. Ninth Report of the International Committee on taxonomy of viruses, 9th Eds. King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J. Academic Press: London, 2012.
  44. ICTV. Virus taxonomy: 2020 Release. https://talk.ictvonline.org/taxonomy/.
  45. Jacobs, S.E.; Lamson, D.M.; St. George, K.; Walsh, T.J. Human rhinoviruses. Clin. Microbiol. Rev., 2013, 26, 135, doi: 10.1128/CMR.00077-12.
  46. Jartti, T.; Jartti, L.; Peltola, V.; Waris, M.; Ruuskanen, O. Identification of respiratory viruses in asymptomatic subjects: asymptomatic respiratory viral infections. Pediatr. Infect. Dis. J., 2008, 27, 1103-1107, doi: 10.1097/INF.0b013e31817e695d.
  47. Karron, R.A.; Wright, P.F.; Crowe, J.E., Jr.; Clements-Mann, M.L.; Thompson, J.; Makhene, M.; Casey, R.; Murphy, B.R. Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. J.Infect. Dis., 1997, 176, 1428-1436, doi: 10.1086/514138.
  48. Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. Jama 2020, 323, 2085-2086, doi: 10.1001/jama.2020.6266.
  49. Kiseleva, I.; Grigorieva, E.; Larionova, N.; Al Farroukh, M.; Rudenko, L. COVID-19 in light of seasonal respiratory infections. Biology (Basel) 2020, 9, doi: 10.3390/biology9090240.
  50. Kiseleva, I.; Larionova, N. Influenza: A century of research. Bentham Science Publishers Ltd.: Sharjah, UAE, 2021; 202p, doi: 10.2174/97816810884401210101.
  51. Kiseleva, I.; Larionova, N.; Kuznetsov, V.; Rudenko, L. Phenotypic characteristics of novel swine-origin influenza A/California/07/2009 (H1N1) virus. Influenza Other Respir Viruses, 2010, 4, 1-5, doi: 10.1111/j.1750-2659.2009.00118.x.
  52. Kiseleva, I.; Rekstin, A.; Al Farroukh, M.; Bazhenova, E.; Katelnikova, A.; Puchkova, L.; Rudenko, L. Non-mouse-adapted H1N1pdm09 virus as a model for influenza research. Viruses, 2020, 12, doi: 10.3390/v12060590.
  53. Kiseleva, I.; Su, Q.; Toner, T.J.; Szymkowiak, C.; Kwan, W.S.; Rudenko, L.; Shaw, A.R.; Youil, R. Cell-based assay for the determination of temperature sensitive and cold adapted phenotypes of influenza viruses. J Virol Methods 2004, 116, 71-78, doi: 10.1016/j.jviromet.2003.10.012.
  54. Koonin, E.V.; Gorbalenya, A.E.; Chumakov, K.M. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett., 1989, 252, 42-46, doi: 10.1016/0014-5793(89)80886-5.
  55. Kormuth, K.A.; Lin, K.; Qian, Z.; Myerburg, M.M.; Marr, L.C.; Lakdawala, S.S. Environmental persistence of influenza viruses is dependent upon virus type and host origin. mSphere, 2019, 4, doi: 10.1128/mSphere.00552-19.
  56. Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis., 2006, 6, 130, doi: 10.1186/1471-2334-6-130.
  57. Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G., et al. Influenza. Nat. Rev. Dis. Primers, 2018, 4, 3, doi: 10.1038/s41572-018-0002-y.
  58. Kumari, P.; Rothan, H.A.; Natekar, J.P.; Stone, S.; Pathak, H.; Strate, P.G.; Arora, K.; Brinton, M.A.; Kumar, M. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses 2021, 13, doi: 10.3390/v13010132.
  59. Lamarre, A.; Talbot, P.J. Effect of pH and temperature on the infectivity of human coronavirus 229E. Can J Microbiol 1989, 35, 972-974, doi: 10.1139/m89-160.
  60. Laporte, M.; Raeymaekers, V.; Van Berwaer, R.; Vandeput, J.; Marchand-Casas, I.; Thibaut, H.J.; Van Looveren, D.; Martens, K.; Hoffmann, M.; Maes, P., et al. The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS pathog., 2021, 17, e1009500, doi: 10.1371/journal.ppat.1009500.
  61. Laurie, K.L.; Rockman, S. Which influenza viruses will emerge following the SARS-CoV-2 pandemic? Influenza Other Respir. Viruses.2021, 10.1111/irv.12866, doi: 10.1111/irv.12866.
  62. Leotte, J.; Trombetta, H.; Faggion, H.Z.; Almeida, B.M.; Nogueira, M.B.; Vidal, L.R.; Raboni, S.M. Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years. J Pediatr (Rio J), 2017, 93, 294-300, doi: 10.1016/j.jped.2016.07.004.
  63. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395, 565-574, doi: 10.1016/s0140-6736(20)30251-8.
  64. Mahl, M.C.; Sadler, C. Virus survival on inanimate surfaces. Can J Microbiol 1975, 21, 819-823, doi: 10.1139/m75-121.
  65. Malik, Y.A. Properties of coronavirus and SARS-CoV-2. Malays J Pathol 2020, 42, 3-11.
  66. Mandal, A. COVID-19 pandemic is “one big wave” says WHO. https://www.news-medical.net/news/20200730/COVID-19-pandemic-is-one-big-wave-says-WHO.aspx
  67. McIntyre, C.L.; Knowles, N.J.; Simmonds, P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J. Gen. Virol., 2013, 94, 1791-1806, doi: 10.1099/vir.0.053686-0.
  68. Mohan, S.V.; Hemalatha, M.; Kopperi, H.; Ranjith, I.; Kumar, A.K. SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges. Chem. Eng. J., 2021, 405, 126893, doi: 10.1016/j.cej.2020.126893.
  69. Murray, P.R. Baron, E. Jorgenson, J.H. Pfaller, M. Yolken, R.H. Manual of clinical microbiology, Ed. P. R. Murray, 9th ed.; 2003; USA: ASM Press, vol. 1. URL: https://www.ncbi.nlm.nih.gov/nlmcatalog/9442686. ISBN: 9781555810863 (hard cover), 1555810861 (hard cover)
  70. Nickbakhsh, S.; Ho, A.; Marques, D.F.P.; McMenamin, J.; Gunson, R.N.; Murcia, P.R. Epidemiology of seasonal coronaviruses: Establishing the context for COVID-19 emergence. J. Infect. Dis., 10.1093/infdis/jiaa185, doi: 10.1093/infdis/jiaa185.
  71. Nickbakhsh, S.; Mair, C.; Matthews, L.; Reeve, R.; Johnson, P.C.D.; Thorburn, F.; von Wissmann, B.; Reynolds, A.; McMenamin, J.; Gunson, R.N., et al. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. U.S.A.,2019, 116, 27142-27150, doi: 10.1073/pnas.1911083116.
  72. Nowak, M.D.; Sordillo, E.M.; Gitman, M.R.; Paniz Mondolfi, A.E. Co-infection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol.,2020, 10.1002/jmv.25953, doi: 10.1002/jmv.25953.
  73. Oliveira, A.C.; Ishimaru, D.; Gonçalves, R.B.; Smith, T.J.; Mason, P.; Sá-Carvalho, D.; Silva, J.L. Low temperature and pressure stability of picornaviruses: implications for virus uncoating. Biophys J 1999, 76, 1270-1279, doi: 10.1016/s0006-3495(99)77290-5.
  74. Ortega, H.; Nickle, D.; Carter, L. Rhinovirus and asthma: Challenges and opportunities. Rev Med Virol 2020, 10.1002/rmv.2193, e2193, doi: 10.1002/rmv.2193.
  75. Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016, 92, 235-250, doi: 10.1016/j.jhin.2015.08.027.
  76. PAHO. Flu Net home page. 2010-2021. http://ais.paho.org/phip/viz/ed_flu.asp.
  77. Papadopoulos, N.G.; Bates, P.J.; Bardin, P.G.; Papi, A.; Leir, S.H.; Fraenkel, D.J.; Meyer, J.; Lackie, P.M.; Sanderson, G.; Holgate, S.T., et al. Rhinoviruses infect the lower airways. J.Infect. Dis.,2000, 181, 1875-1884, doi: 10.1086/315513.
  78. Papadopoulos, N.G.; Sanderson, G.; Hunter, J.; Johnston, S.L. Rhinoviruses replicate effectively at lower airway temperatures. J.Med. Virol., 1999, 58, 100-104, doi: 10.1002/(sici)1096-9071(199905)58:1<100::aid-jmv16>3.0.co;2-d.
  79. Pappas, D.E.; Hendley, J.O. The common cold and decongestant therapy. Pediatr Rev 2011, 32, 47-54, doi: 10.1542/pir.32-2-47.
  80. Pappas, D.E.; Hendley, J.O.; Hayden, F.G.; Winther, B. Symptom profile of common colds in school-aged children. Pediatr. Infect. Dis. J.,2008, 27, 8-11, doi: 10.1097/INF.0b013e31814847d9.
  81. Pérez, L.; Carrasco, L. Entry of poliovirus into cells does not require a low-pH step. J. Virol.,1993, 67, 4543-4548, doi: 10.1128/jvi.67.8.4543-4548.1993.
  82. Poole, S.; Brendish, N.J.; Clark, T.W. SARS-CoV-2 has displaced other seasonal respiratory viruses: Results from a prospective cohort study. J. Infect.,2020, 10.1016/j.jinf.2020.11.010, doi: 10.1016/j.jinf.2020.11.010.
  83. Roebuck, M.O. Rhinoviruses in Britain 1963-1973. J. Hyg., 1976, 76, 137-146, doi: 10.1017/s0022172400055029.
  84. Rose, E.B.; Wheatley, A.; Langley, G.; Gerber, S.; Haynes, A. Respiratory Syncytial Virus Seasonality - United States, 2014-2017. MMWR Morb. Mortal Wkly. Rep., 2018, 67, 71-76, doi: 10.15585/mmwr.mm6702a4.
  85. Sagripanti, J.L.; Lytle, C.D. Inactivation of influenza virus by solar radiation. Photochem Photobiol 2007, 83, 1278-1282, doi: 10.1111/j.1751-1097.2007.00177.x.
  86. Sajjan, U.; Wang, Q.; Zhao, Y.; Gruenert, D.C.; Hershenson, M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, 178, 1271-1281, doi: 10.1164/rccm.200801-136OC.
  87. Sakudo, A.; Onodera, T.; Tanaka, Y. Inactivation of viruses. In Sterilization and Disinfection by Plasma: Sterilization Mechanisms, Biological and Medical Applications (Medical Devices and Equipment), 1st ed.,Eds. Sakudo, A., Shintani, H. Hauppauge, N.Y.: Nova Science Publishers: United States, 2010; pp. 49-60. ISBN: 9781616687823 (hardcover). https://www.ncbi.nlm.nih.gov/nlmcatalog/101533730
  88. Savolainen, C.; Blomqvist, S.; Hovi, T. Human rhinoviruses. Paediatr Respir Rev 2003, 4, 91-98, doi: 10.1016/s1526-0542(03)00030-7.
  89. Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A.,2020, 117, 11727-11734, doi: 10.1073/pnas.2003138117.
  90. Sow, F.B.; Gallup, J.M.; Krishnan, S.; Patera, A.C.; Suzich, J.; Ackermann, M.R. Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs. Respir Res 2011, 12, 106, doi: 10.1186/1465-9921-12-106.
  91. Stobart, C.C.; Nosek, J.M.; Moore, M.L. Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front.Microbiol.,2017, 8, 2412, doi: 10.3389/fmicb.2017.02412.
  92. Strauss, J.H., Strauss, E.G. Minus-strand RNA viruses. In Viruses and human disease, 2nd ed.,Eds. Strauss, J.H., Strauss, E.G., Academic Press: London, 2008,doi: 10.1016/B978-0-12-373741-0.50007-6 pp. 137-191.
  93. Strauss, J.H., Strauss, E.G. Overview of viruses and virus infection. In Viruses and human disease, 2nd ed.,Eds. Strauss, J.H., Strauss, E.G., Academic Press: London, 2008,doi: 10.1016/B978-0-12-373741-0.50004-0 pp. 1-33.
  94. Strauss, J.H., Strauss, E.G. Plus-strand RNA viruses. In Viruses and human disease, 2nd ed.; Eds. Strauss, J.H., Strauss, E.G., Academic Press: London, 2008,doi: 10.1016/B978-0-12-373741-0.50006-4 pp. 63-136.
  95. To, K.K.W.; Yip, C.C.Y.; Yuen, K.Y. Rhinovirus - from bench to bedside. J Formos Med Assoc 2017, 116, 496-504, doi: 10.1016/j.jfma.2017.04.009.
  96. Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.; Zimsen, S.R.M.; Albertson, S.; Stanaway, J.D.; Deshpande, A.; Farag, T., et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect.Dis.,2018, 18, 1191-1210, doi: 10.1016/s1473-3099(18)30310-4.
  97. Troeger, C.E.; Blacker, B.F.; Khalil, I.A.; Zimsen, S.R.M.; Albertson, S.B.; Abate, D.; Abdela, J.; Tara Ballav Adhikari, T.B.A.; Sargis Aghasi Aghayan, S.A.; Agrawal, S., et al. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med.,2019, 7, 69-89, doi: 10.1016/s2213-2600(18)30496-x.
  98. Trougakos, I.P.; Stamatelopoulos, K.; Terpos, E.; Tsitsilonis, O.E.; Aivalioti, E.; Paraskevis, D.; Kastritis, E.; Pavlakis, G.N.; Dimopoulos, M.A. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021, 28, 9, doi: 10.1186/s12929-020-00703-5.
  99. Tuthill, T.J.; Groppelli, E.; Hogle, J.M.; Rowlands, D.J. Picornaviruses. Curr. Top. Microbiol. Immunol.,2010, 343, 43-89, doi: 10.1007/82_2010_37.
  100. Tyrrell, D.A.; Cohen, S.; Schlarb, J.E. Signs and symptoms in common colds. Epidemiol Infect 1993, 111, 143-156, doi: 10.1017/s0950268800056764.
  101. Waman, V.P.; Kolekar, P.S.; Kale, M.M.; Kulkarni-Kale, U. Population structure and evolution of rhinoviruses. PloS ONE, 2014, 9, e88981, doi: 10.1371/journal.pone.0088981.
  102. Weber, T.P.; Stilianakis, N.I. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J. Infect., 2008, 57, 361-373, doi: 10.1016/j.jinf.2008.08.013.
  103. Weinberger Opek, M.; Yeshayahu, Y.; Glatman-Freedman, A.; Kaufman, Z.; Sorek, N.; Brosh-Nissimov, T. Delayed respiratory syncytial virus epidemic in children after relaxation of COVID-19 physical distancing measures, Ashdod, Israel, 2021. Euro Surveill., 2021, 26, doi: 10.2807/1560-7917.Es.2021.26.29.2100706.
  104. WHO. Coronavirus disease (COVID-19) dashboard. https://covid19.who.int/.
  105. WHO. Influenza (Seasonal). https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal).
  106. WHO. Overview of influenza activity globally. Influenza Update N° 450 of 10 October 2021. https://cdn.who.int/media/docs/default-source/influenza/influenza-updates/2021/2021_10_25_surveillance_update_405.pdf?sfvrsn=981d497d_5.
  107. Winther, B. Rhinovirus infections in the upper airway. Proc. Am. Thorac. Soc., 2011, 8, 79-89, doi: 10.1513/pats.201006-039RN.
  108. Winther, B. Rhinoviruses. In International Encyclopedia of Public Health, Ed. Heggenhougen, H.K., Academic Press: Oxford, 2008; doi: 10.1016/B978-012373960-5.00610-9 pp. 577-581.
  109. Winther, B.; Gwaltney, J.M.; Hendley, J.O. Respiratory virus infection of monolayer cultures of human nasal epithelial cells. Am Rev Respir Dis 1990, 141, 839-845, doi: 10.1164/ajrccm/141.4_Pt_1.839.
  110. Wolsk, H.M.; Følsgaard, N.V.; Birch, S.; Brix, S.; Hansel, T.T.; Johnston, S.L.; Kebadze, T.; Chawes, B.L.; Bønnelykke, K.; Bisgaard, H. Picornavirus-induced airway mucosa immune profile in asymptomatic neonates. J. Infect. Dis.,2016, 213, 1262-1270, doi: 10.1093/infdis/jiv594.
  111. Wu, A.; Mihaylova, V.T.; Landry, M.L.; Foxman, E.F. Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study. Lancet Microbe 2020, 1, e254-e262, doi: 10.1016/s2666-5247(20)30114-2.
  112. Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA,2020, 323, 1239-1242, doi: 10.1001/jama.2020.2648.
  113. Zanotto, P.M.; Gibbs, M.J.; Gould, E.A.; Holmes, E.C. A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J. Virol.,1996, 70, 6083-6096, doi: 10.1128/JVI.70.9.6083-6096.1996.
  114. Zlateva, K.T.; van Rijn, A.L.; Simmonds, P.; Coenjaerts, F.E.J.; van Loon, A.M.; Verheij, T.J.M.; de Vries, J.J.C.; Little, P.; Butler, C.C.; van Zwet, E.W., et al. Molecular epidemiology and clinical impact of rhinovirus infections in adults during three epidemic seasons in 11 European countries (2007-2010). Thorax 2020, 75, 882-890, doi: 10.1136/thoraxjnl-2019-214317.

Supplementary files

There are no supplementary files to display.

Copyright (c) Kiseleva I.V., Ksenafontov A.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies